
A Journey Through Computatuion 2/21/25, 11:39 AM

1 Copyright © 2024 by Karl Fant

A Journey Through Computation
Natural and Human

Karl Fant

With gratitude to
Steve Johnson and Chris Nicol

for
listening and understanding

A Journey Through Computatuion 2/21/25, 11:39 AM

2 Copyright © 2024 by Karl Fant

Table of Contents
Chapter 1: Subtleties of primitivity 4

1.1. Sequentiality. 4
1.2. QUANDARY 1: Dependency 5
1.3. QUANDARY 2: Primitivity 5
1.4. Concurrency 5
1.5. Boolean logic 5
1.6. QUANDARY 3: Insufficient primitivity 6
1.7. QUANDARY 4: Concurrency myopia 7
1.8. Seeking a sufficient accounting 7

Chapter 2: Condition Differentiation 8
2.1. Differentness of condition 8
2.2. A familiar example of pure condition interaction: Roman numeral addition 9
2.3. Interlude: Pure condition differentiation 15
2.4. A first principle fulfilled 16

Chapter 3: Association Differentiation 17
3.1. The behavior of statically associated persistences 17
3.2. Primitive interaction behaviors: sufficient expressivity 21
3.3. INTERLUDE: Sufficiently expressive primitivity 24
3.4. The constant network: composing primitive behaviors 25
3.5. INTERLUDE: The constant network 43
3.6. QUANDARY 5: The environment 45
3.7. The oscillation network: self regulation 45
3.8. INTERLUDE: Marking time with the oscillation network 47
3.9. The pipeline network: composing self regulation 48
3.10. INTERLUDE: The pipeline network 61
3.11. The autonomous pipeline network: self control 63
3.12. The embedded pipeline network: the passive environment 64
3.13. INTERLUDE: The autonomous pipeline network 65
3.14. The journey 66

Chapter 4: Temporal differentiation 68
4.1. The ring network: boundless network, endless time 68
4.2. INTERLUDE: The ring network 70
4.3. The source ring network: making time 71
4.4. The pipeline ring network: from time to time 73
4.5. INTERLUDE: A collision of expression regimes 76
4.6. Removing the exposed binding portal 77
4.7. INTERLUDE: The self determined network 81
4.8. The LFSR network: interacting differentnesses of time 83
4.9. The immersed ring network: engaging the environment 87
4.10. The memory ring network: Stopping time 91
4.11. A network of addressable memory rings: arranging time 92
4.12. A most primitive sequence controller 94
4.13. INTERLUDE: The journey -PAGE-

...
..

..
...

...
...

...
..

...
...

..
......................

..
...

..
...

..
..

...
..

...
..

...
..

...
...

...
..

..
...

..
...

..
..

..
...

...
..
...

...
..

..
...

A Journey Through Computatuion 2/21/25, 11:39 AM

3 Copyright © 2024 by Karl Fant

4.14. Still not done 100
Chapter 5: The spectrum of Differentiation 101

5.1. The collaboration 101
5.2. A walk along the spectrum 102
5.3. With fifteen available differentness conditions 102
5.4. Constrained to nine available differentness conditions 103
5.5. Constrained to six available differentness conditions 105
5.6. Constrained to three available differentness conditions 107
5.7. Constrained to two available differentness conditions 115
5.8. Constrained to one differentness condition: Pure association differentiation 122
5.9. Spectrum summary: The differentness of differentness 125

Appendix A: Blinded by Elegance: The Null Convention Logic Library 128
A.1. Null Convention Logic 128
A.2. The strategic error 130
A.3. The conceptual error 130
A.4. The practical error 133
A.5. The technical error 135
A.5.1. The nominal behavior of THXOR 135
A.5.2. The race behavior of THXOR 136
A.5.3. The deadlock behavior of THXOR 136

Appendix B: Pipeline Performance 139
B.1. Basic pipeline network structure and behavior 139
B.2. Primitive component performance 139
B.3. Network composition 140
B.3.1. Composition performance 141
B.3.2. Further composition 141
B.3.3. Longpipe performance 142
B.3.4. Pipeline performance 142
B.3.5. Performance in an environment 142

Appendix C: Wavefront Arbitration 143
C.1. The MUTEX 143
C.2. The arbiter 143
C.3. Arbitrating composite wavefronts 146

Appendix D: Wavefronts and bubbles 148
D.1. Pipeline flow behavior 148
D.1.1. Pipeline initialization: 149
D.1.2. Wavefront and bubble flow behavior 149

Appendix E: Initializing a D wavefront in a pipeline 152
E.1. Initializing a D wavefront 152

Appendix F: 5 bit Multiply interaction network 153
Appendix G: The orphan delay risk 155

..
..

...
...

..
...

..
..

...
..............

...
................................

..
...

...
...
..

...
..

..
...

...
..

..
..

...
...

..
...

...
...

...
...

...
..
..

...
..

..
..

...

A Journey Through Computatuion 2/21/25, 11:39 AM

4 Copyright © 2024 by Karl Fant

Chapter 1:
Subtleties of primitivity

1
Sequence controlled steps of behavior, considered the fundamental model of computation,

and Boolean logic, considered the most primitive computational behavior do not provide a
complete and coherent accounting of computation.

1.1. Sequentiality.
“Computation is the evolution process of some environment by a sequence of
“simple, local” steps.” 1

Sequential computation is represented one step at a time. Each step is a behavior that receives
an input from a state environment and returns an output to the state environment evolving the
state environment step by step. Each step completes and delivers its output before the next step
begins ensuring that each next step receives a stable input from a stable state environment.

1.1.1. The innate concurrency of sequentiality
A sequential ordering of steps does not, in itself, specify a computation. A sequence of steps

has to realize the correct flow of dependency relations through the state environment.
Dependency of flow relations includes relations that can occur “all at once” or “in any order”.
The, “all at once”, represents concurrency. The, “in any order”, means that the concurrent steps
can be mapped to a sequential ordering of steps. But “in any order” also means that there can be
a multitude of different sequential orderings that correctly realize the flow of dependency
relations of the computation. Further, there is a multitude of sequential orders that do not
correctly realize the dependency relations.

A

B

C

D

E

F

G

H

I

dependency specification possible sequences of ABCD
ABCD BACD CBAD DABC
ABDC BADC CBDA DACB
ACBD BCAD CABD DBAC
ACDB BCDA CADB DBCA
ADCB BDAC CDAB DCAB
ADBC BDCA CDBA DCBA

Figure 1.1. Sequencing concurrency

The left of Figure 1.1 represents a network of dependency relations. In the shaded region of
the network A and B can occur in any order before D. If either A or B occur after D the sequence
is incorrect. C can occur in any order with A, B and D. The right of Figure 1.1 represents all the
possible sequences of A, B, C and D. The shaded sequences are the eight sequential orderings
realizing the correct flow of dependency derived from the similarly shaded portion of the
dependency network. The unshaded 16 possible sequences are all incorrect (D occurs before A or
B or both). With such variety of sequence it can be difficult to be confident of the correctness of
a specific sequential order and even more difficult to reliably perceive incorrectness. The only
means of differentiating a correct sequential ordering from an incorrect sequential ordering in a
typically enormous set of possible sequential orderings is to refer to the unique dependency of
flow representation with its innate concurrent relations.

A Journey Through Computatuion 2/21/25, 11:39 AM

5 Copyright © 2024 by Karl Fant

1.2. QUANDARY 1: Dependency
Sequential ordering is necessarily derived from dependency relations so the expression of

dependency relations with their innate concurrency must be considered to be more primitive than
the expression of sequential order.

1.2.1. The sequence controller
Steps do not sequence themselves. Sequentiality requires a sequence controller that actualizes

each step in turn, connects it with the state environment and determines its completeness of
output before beginning the next step. A sequence controller cannot control itself but can be
represented as a sequence of more primitive steps controlled by a more primitive sequence
controller forming a hierarchy of sequence controllers such as program, instructions, microcode
and so on. However, there must be a most primitive sequence controller which cannot itself be
sequence controlled.

1.3. QUANDARY 2: Primitivity
Sequentiality cannot be primitive. Its most primitive sequence controller must be expressed,

not in terms of a sequence of steps but directly in terms of dependency relations among primitive
behaviors which dependency relations include innate concurrency relations.

That sequential interpretation provides a universal realizer of every possible computation
does not necessarily mean that sequential interpretation represents a primitive essence of
computation.

1.4. Concurrency
Concurrency relations are conventionally viewed from simply insignificant

“All we would lose by the omission of "parallel processing" is speed, nothing
fundamental.” 2

to fundamentally unrealizable.
“The introduction of concurrency into computation opens Pandora’s box to
release the possibility of non determinacy and a host of other complications,
including deadlock and livelock Events within concurrent systems do not
necessarily occur at predetermined times, but may occur in different orders
depending upon the relative speeds of different system parts. The usual
assumption, which is also physically realistic, is that relative speeds cannot be
controlled so precisely that the designer or programmer can depend upon them to
enforce sequencing requirements.” 3

1.5. Boolean logic
The most primitive behaviors are conventionally understood to be Boolean logic behaviors

because they are primitive to a mathematician, the arbitrarily capable agency at the heart of
mathematics, who can correctly interpret the behavior of a Boolean network and its concurrent
relations step by step with her pencil and paper. In the absence of the mathematician, a network
of Boolean logic behaviors relying on the merits of its intrinsic logical behaviors, does not work.

A Journey Through Computatuion 2/21/25, 11:39 AM

6 Copyright © 2024 by Karl Fant

Enlivened Boolean functions are continually responsive to their input and are continually
asserting output dependent on the input. Two behaviors, each presenting an input to a third
behavior, can behave independently and concurrently with different delays. The two input
transitions to the third behavior can arrive at different times causing the third behavior to
temporarily output an incorrect result transition (a glitch). This temporarily incorrect result
transition will be presented to subsequent behaviors causing them to temporarily transition their
output to incorrect result transitions which will race ahead though the network of behaviors
asserting a chaos of incorrect transitions at the output of the network. The network and its
Boolean behaviors cannot, on their own, determine amidst the chaotic transitioning of incorrect
results when its input has completely and stably transitioned nor when the network output is
completed with the correct result of the presented input. This is the Pandora’s box of non
determinacy mentioned in the quote above.

1.6. QUANDARY 3: Insufficient primitivity
Boolean logic behaviors, which are insufficiently expressive on their own behavioral merits

to coordinate the innate concurrent relations in a network of dependently related Boolean logic
behaviors, do not present a viable primitivity.

1.6.1. Hiding the chaos of concurrency
If the inputs to a Boolean logic network are held stably for long enough correct results

eventually propagate through the behaviors and the network stabilizes asserting the complete and
correct output for the presented input. The chaotic behavior of a Boolean logic combinational
network can be hidden and remediated by isolating and bounding it with memories (registers -
data lifeboats) controlled by a time interval long enough to allow the network to stabilize. At the
beginning of the time interval an input memory presents the input to the network, the time
interval waits long enough for the network to settle to a stable output then at the end of the time
interval an output memory accepts the correct and stable output. The chaotic behavior of the
Boolean network is isolated and hidden within the time interval and between the bounding
memories.

Successive time intervals present a sequence of inputs to the network and produce a sequence
of outputs. The chaotic Boolean logic network with the crutch of the bounding memories and
time interval becomes a timed sequential step of determined computation.

1.6.2. Sequential steps of hidden concurrency
These memory and time interval bounded Boolean networks are composed into a network of

bounded Boolean networks all timed with the same time interval long enough to accommodate
the slowest to stabilize network (critical path). All of the bounded networks controlled by the
same common time interval, behave concurrently (all at once) within each time interval. With the
single common time interval precisely controlling the start and end of all the networks, the
concurrently behaving bounded Boolean networks fulfill the above author’s requirement of
precisely controlled relative speeds for reliable concurrent behavior. With each successive time
interval results flow from bounded Boolean network to bounded Boolean network. The innate
and chaotic concurrency relations isolated inside each bounded Boolean network are sequence
controlled by the timing interval and the memories. In this way a most primitive sequence

A Journey Through Computatuion 2/21/25, 11:39 AM

7 Copyright © 2024 by Karl Fant

1. Avi Wigderson “Mathematics + Computation, The theory revolutionizing technology and science”,
(Princeton, New Jersey, Princeton University Press, 2019). p. 307.

2. Richard Feynman, “Feynman Lectures On Computation” (Reading, Massachusetts, Addison Wesley, 1996) p
4.

3. Charles Seitz ed., Resources in Parallel and Concurrent Systems, ACM Press, New York, 1991, introduction,
page ix.

controller can be realized as a network of bounded Boolean networks all behaving concurrently
and determinately to realize a single step of sequence control.

1.7. QUANDARY 4: Concurrency myopia
Timed sequence control has vanquished the chaotic concurrency of Boolean networks

enabling the construction of a most primitive sequence controller. Might sequence control be
considered necessary and foundational if not primitive?

Yet, even with the veneer of sequence control, the representation of sequenced steps at all
levels, still derives from and is preceded by dependency relations with their innate concurrency
and the most primitive sequence controller is realized with time bounded Boolean logic networks
within each of which lingers the chaotic concurrency of the most primitive dependency relations.

Despite the immense computational success of sequentiality and Boolean logic over the past
70 years they fail to completely and coherently account for computation. A complete and
coherent accounting of computation must embrace the primitivity of dependency relations and
their innate concurrency.

1.8. Seeking a sufficient accounting
The straightforward goal of the journey is to discover an accounting of computational

interaction that directly expresses dependency flow with its innate primitive concurrency
relations and which evolves to encompass all forms of computational interaction. An accounting
that provides a common characterization of interaction whether in a biological cell, in a digital
computer or in a mathematician’s head. An accounting capable of characterizing the
mathematician herself as well as what she does with her pencil and paper. An accounting from
which familiar forms of interaction, Boolean logic with its time interval and sequential
interpretation with its notion of state, emerge through considerations quite different from those of
their historic development. An accounting of computational interaction in terms of a primitivity
complete and sufficient in itself with nothing hidden and in no need of any extrinsic support.

A Journey Through Computatuion 2/21/25, 11:39 AM

8 Copyright © 2024 by Karl Fant

Chapter 2:
Condition Differentiation

2
The journey of discovery begins with the notion of differentness spontaneously and

dependently interacting and changing as first principle in contrast to regarding a mathematician
with pencil and paper as first principle.

2.1. Differentness of condition
Condition is a common term representing differentness. Each differentness is represented as a

condition that can interact its differentness with one or more other different conditions and
change condition differentness. A condition is different from all other conditions in its propensity
to spontaneously interact with specific other different conditions and to not interact with all
remaining different conditions. Interacting conditions of differentness symmetrically and equally
appreciating each others differentness by changing is the essence of computational interaction.
The different after conditions are the appreciation the differentness of the interacting conditions.
A differentness of condition that never interacts and never changes is not appreciable. A
differentness of condition that changes spontaneously without interacting is not appreciated.

2.2. Sameness of persistence
Persistence is a common term representing sameness. The sameness of a persistence spans

and relates a specific after differentness as the appreciation of a specific before differentness of a
specific interaction change. Without a spanning persistence a newly appearing after differentness
is not an appreciation of any specific before differentness.

Sameness and differentness are codependent and collaborative. Codependent in the sense that
sameness presents in relation to differentness and differentness presents in relation to sameness.
Collaborative in the sense that the spanning sameness of persistence links the changing
differentness conditions of interaction and the interaction propensities of differentness of
condition links the sameness of persistences mutually and indefinitely renewing each’s
expressivity.

For this narrative persistence will be characterized as a carrier of condition differentness that
asserts one at a time of two or more mutually exclusive condition differentnesses each with a
specific interaction propensity. When an interaction occurs the persistence changes it asserted
condition to the interaction result condition linking the after condition with the before condition
through the sameness of the persistence and ensuring the beforeness and afterness of the
interacting conditions with its mutually exclusive one at a time assertion of condition.

2.3. Place of common association
Persistences indiscriminately associate in a place of common association which is itself a

spanning persistence and which might be a gravity well, a cell membrane, a concentration
gradient, a tide pool, a community and so on. When two or more asserted conditions encounter
they either interact or do not interact. If the encountering conditions have no propensity to
interact then nothing happens. Each persistence with its asserted condition moves on with no
lingering consequences of the failure to interact. If the encountering conditions have a propensity
to interact the conditions interact with the asserting persistences spontaneously changing their
asserted condition. A molecule, for instance, is a persistence that asserts a chemical condition

A Journey Through Computatuion 2/21/25, 11:39 AM

9 Copyright © 2024 by Karl Fant

that may spontaneously interact with and change its chemical condition only in combination with
specific other chemical conditions.

The place of common indiscriminate association for this discussion is represented by a
shaking bag, illustrated in Figure 2.1. The bag prevents contained persistences and their asserted
conditions from wandering off and prevents external persistences from intruding. The shaking
ensures that each asserted condition encounters all the other asserted conditions in the bag.

M

D

C

L

XV

I

C

C

C

X
I

I

XX

I

I

Figure 2.1. Persistences and their conditions agitated in a place of common association.

2.3.1. Interaction dependency
As conditions interact and change the interacting conditions disappear and different result

conditions with different interaction propensities appear which interact further and change into
further different result conditions forming progressions of dependent interactions within the bag
represented by the different conditions and their specific interaction propensities.

2.3.2. Interaction coordination
Interactions coordinate their dependency relations with completeness relations. An

interaction begins with completeness of input, when all of the interacting conditions are
sufficiently proximally associated. An interaction is completed when the interacting conditions
disappear and the interaction result conditions appear. The appearance of an interaction result
condition is sufficient to imply that the interacting conditions were completely present and that
the interaction has completed.

2.3.3. Pure condition differentiation
Because all specificity of interaction is in terms of differentness of conditions and their

interaction propensities this form of interaction is called pure condition differentiation.
The familiar exemplar of pure condition differentiation is proteins in the cytoplasm of a

biological cell. Each protein molecule is a persistence and the folding of each protein molecule
manifests two or more unique configuration conditions determining its interaction with other
molecular conditions. The warm cytoplasm and the cell membrane form the agitating place of
common association.

2.4. A familiar example of pure condition interaction: Roman
numeral addition

Pure condition interaction is illustrated with Roman numeral addition considered without the
subtractive principle: 9 is VIIII instead of IX, 40 is XXXX instead of XL and so on. A Roman
numeral is represented by the possible conditions: I, V, X, C, D, M. Without the subtractive

A Journey Through Computatuion 2/21/25, 11:39 AM

10 Copyright © 2024 by Karl Fant

principle Roman numerals are association independent. Place in relation does not contribute to
differentiation. The subtractive principle which may have been invented by stone carvers as an
economy measure is not intrinsic to Roman numerals.1 For example:

XLII = LXII = ILXI = IILX = LIIX = LIXI = IXIL = XILI = XIIL = IIXL = … = 62

Roman numeral addition is expressed with the interaction propensities shown in Figure 2.2.

Figure 2.2. Roman Numeral interaction fulfillment relations.

The conditions embody the interaction propensities. When two Vs encounter they fulfill the
interaction relation [V,V] and spontaneously change into X. Given two Roman numerals these
interaction propensities will reduce them to a minimal single numeral representing their addition.
The numbers 1878 and 122 are used as example.

MDCCCLXXVIII + CXXII = MM

The two example numerals are placed into a shaking bag as in Figure 2.3 below. The five Is
will fulfill relation [I,I,I,I,I], and change into a V. There are then two Vs that will change to an X
resulting in five Xs which will change to an L resulting in two Ls which will change to a C
resulting in five Cs which will change to a D resulting in two Ds which will change to an M.
What remains in the bag are two Ms. There is no interaction propensity with fulfillment [M,M]
so no more interactions can occur and the addition is completed. Conditions associate, interact
according to their propensities and the Roman numeral sum appears.

[I,I,I,I,I] => V
[V,V] => X

[X,X,X,X,X] => L
[L,L] => C

[C,C,C,C,C] => D
[D,D] => M

A Journey Through Computatuion 2/21/25, 11:39 AM

11 Copyright © 2024 by Karl Fant

Interaction propensities
Persistences asserting
Roman numeral conditions
enter the bag.

IIIII -> V

 VV -> X

XXXXX [L]

DD -> M

CCCCC -> D

I
II

I I V

V
V X

X X
XX X L

L L C

C
C CC C

D

D D M

 LL -> C

Persistences associate in the shaking bag. Their asserted conditions
fulfill interaction propensities and the indicated condition changes
occur. The addition resolves as a progression of interactions and

condition changes inside the bag.

M

D

C

L

XV

I

C

C
C

X
I

I

X

X

I

I
M

D C
L

X
V

I

C
C

C

X I
I

X
X

I I
M

D
C

L

X V
C

C

C

X V

X
X

M

D
C

L
C

C

C

X

X
X
XX M

D
C

LC
C

C

L
M

D

C
C

C
C
C

M
D
D

M M

 LL -> CIIIII -> V VV -> X XXXXX -> L

CCCCC -> D

DD -> M

M

D

C

L

XV

I

C

C

C

X
I

I

XX

I

I

The bag closes and shakes

Figure 2.3. Roman numeral addition in shaking bag.

A fully determined numerical interaction occurs as a progression of discriminate interactions
of different conditions according to interaction propensities while conditions indeterminately
associate inside the shaking bag

2.4.1. Interaction incompleteness
But the addition interaction is not complete in itself. It cannot, itself, determine when its

interaction is completed. As with a Boolean logic network the only way to determine the
progress of the addition is with an external agency which, in this case, must open the bag and
perform a complicated count of the conditions. When there are four or fewer of I, X, C and one
or fewer of V, L, D the addition is completed.

2.4.2. Completeness of expression
Intrinsically determining when a interaction is done requires that there be a necessarily last

interaction propensity fulfilled. With the present form of the expression there might not even be a
first interaction. VI + XII = XVIII is done with no interaction behavior at all. There must be a
completeness of behavior at each stage of interaction to insure that every interaction propensity
is fulfilled in an orderly progression to the necessarily last interaction.

Completeness of behavior requires a completeness of representation. The first question of an
addition is, how many Is are present in the bag. The interaction must count the Is and somehow
determine that it has considered all the Is and has not missed any Is in the bag. This counting can
be accomplished if the number of Is in the bag to be counted is always the same. This constancy
of quantity of Is is arranged with buffer conditions such that there is always the same number of
each condition and its buffer condition in each Roman numeral. The corresponding lower case
letter will be used as the buffer condition for each numeral condition as shown in Figure 2.4.

A Journey Through Computatuion 2/21/25, 11:39 AM

12 Copyright © 2024 by Karl Fant

Figure 2.4. Roman numerals with their associated buffer conditions.

The buffer condition i is used such that there is always exactly four of I and/or i in a Roman
numeral: iiii, Iiii, IIii, IIIi or IIII. The buffer conditions serve a role similar to zero in place
value numbers. When two numerals are added there will always be exactly eight of I and/or i.
The criterion for completeness, the counting of I/i, can now be represented by the completeness
fulfillment of each I/i Interaction propensity, shown in Figure 2.5 below, which is exactly eight I/
i conditions. Each completeness of association fulfillment is an unordered association of
conditions. There are no order relationships in the bag. The Interaction propensity fulfillment
will occur only when the proximal association of all eight conditions is completely formed.

Figure 2.5. Interaction propensities for I,i and V,v.

The result of the interaction of eight I/i is four I/i and one V/v. The one V/v is the carry to the
V/v interaction. There is one of V/v in each Roman numeral and there will always be a carry
condition of V or v so there will always be exactly three of V/v present after the carry. The Vv
Interaction propensity fulillments require three of V/v in Figure 2.5 above ensuring that the V/v
interaction occurs strictly after the I/i interaction. The V/v interaction produces one of V/v and
one of X/x.

There will be four of X/x in each Roman numeral so adding two Roman numerals will
involve eight X/x conditions and the carry X/x condition making exactly nineX/x conditions to
form the X/x Interaction propensity fulfillments shown in Figure 2.6. Again, because of the carry,
the X/x interaction will occur strictly after the V/v interaction.

Numeral
condition

I
V
X
J
C
D
M

Buffer
condition

i
v
x
l
c
d
m

Interaction propensities for I,i
[i,i,i,i,i,i,i,i] => [i,i,i,i,v]
[I,i,i,i,i,i,i,i] => [I,i,i,i,v]
[I,I,i,i,i,i,i,i] => [I,I,i,i,v]
[I,I,I,i,i,i,i,i] => [I,I,I,i,v]
[I,I,I,I,i,i,i,i] => [I,I,I,I,v]
[I,I,I,I,I,i,i,i] => [i,i,i,i,V]
[I,I,I,I,I,I,i,i] => [I,i,i,i,V]
[I,I,I,I,I,I,I,i] => [I,I,i,i,V]
[I,I,I,I,I,I,I,I] => [I,I,I,i,V]

Interaction propensities for V,v
[v,v,v] => [v,x]
[V,v,v] => [V,x]
[V,V,v] => [v,X]
[V,V,V] => [V,X]

A Journey Through Computatuion 2/21/25, 11:39 AM

13 Copyright © 2024 by Karl Fant

Figure 2.6. Interaction propensities for X,x and L,l.

After the X/x interaction there will be three L/l conditions fulfilling the L/l Interaction
propensities strictly after the X/x interaction. The L/l interaction produces one L/l condition and
one C/c carry condition.

There will be four of C/c in each Roman numeral so adding two Roman numerals will
involve eight conditions and the carry condition will make exactly nine C/c conditions to form
the C/c interaction propensity fulfillments as shown in Figure 2.7. Again, the C/c interaction will
occur strictly after the L,l interaction.

Figure 2.7. Interaction propensities for C,c and D,d.

After the C/c interaction there will be three D/d conditions fulfilling the D/d Interaction
propensities strictly after the C/c interaction. The D/d interaction produces one D/d condition
and one M/m carry condition.

The M/m interaction propensities, shown in Figure 2.8 pose a difficulty because M does not
have an intrinsic maximal form. One can put as many Ms as one likes in a Roman numeral and
the only way to pre-determine how many Ms there are is to limit the number of M/ms allowed in
a Roman numeral. In this discussion the number of M/ms will be limited to five so that, with the
carry, there are always exactly eleven of M/m. The M/m interaction occurs strictly after the D/d
interaction and is the necessarily last interaction of the Roman numeral addition. The interaction
produces five of M/m and the condition Z which indicates the completion of the addition.

Interaction propensities for X,x
[x,x,x,x,x,x,x,x,x] => [x,x,x,x,l]
[X,x,x,x,x,x,x,x,x] => [X,x,x,x,l]
[X,X,x,x,x,x,x,x,x] => [X,X,x,x,l]
[X,X,X,x,x,x,x,x,x] => [X,X,X,x,l]
[X,X,X,X,x,x,x,x,x] => [X,X,X,X,l]
[X,X,X,X,X,x,x,x,x] => [x,x,x,x,L]
[X,X,X,X,X,X,x,x,x] => [X,x,x,x,L]
[X,X,X,X,X,X,X,x,x] => [X,X,x,x,L]
[X,X,X,X,X,X,X,X,x] => [X,X,X,x,L]
[X,X,X,X,X,X,X,X,X] => [X,X,X,X,L]

Interaction propensities for L,l
[l,l,l] => [l,c]
[L,l,l] => [L,c]
[L,L,l] => [l,C]
[L,L,L] => [L,C]

Interaction propensities for C,c
[c,c,c,c,c,c,c,c,c] => [c,c,c,c,d]
[C,c,c,c,c,c,c,c,c] => [C,c,c,c,d]
[C,C,c,c,c,c,c,c,c] => [C,C,c,c,d]
[C,C,C,c,c,c,c,c,c] => [C,C,C,c,d]
[C,C,C,C,c,c,c,c,c] => [C,C,C,C,d]
[C,C,C,C,C,c,c,c,c] => [c,c,c,c,D]
[C,C,C,C,C,C,c,c,c] => [C,c,c,c,D]
[C,C,C,C,C,C,C,c,c] => [C,C,c,c,D]
[C,C,C,C,C,C,C,C,c] => [C,C,C,c,D]
[C,C,C,C,C,C,C,C,C] => [C,C,C,C,D]

Interaction propensities for D,d
[d,d,d] => [d,m]
[D,d,d] => [D,m]
[D,D,d] => [d,M]
[D,D,D] => [D,M]

A Journey Through Computatuion 2/21/25, 11:39 AM

14 Copyright © 2024 by Karl Fant

Figure 2.8. Interaction propensities for M,m.

2.4.3. The new Roman numeral format
A modified Roman numeral is always exactly twenty conditions: four of I or i, one of V or v,

four of X or x, one of L or l, four of C or c, one of D or d, and five of M or m. The number one
is mmmmmdcccclxxxxviiiI. The number zero is mmmmmdcccclxxxxviiii. This is analogous to
a 32 bit 2s complement binary number which is always 32 bits regardless of its magnitude.

The Roman numerals.
MDCCCLXXVIII and CXXII

now become
mmmmMDCCCcLxxXXViIII and mmmmmdCccclxxXXviiII

and the addition becomes:
mmmmMDCCCcLxxXXViIII + mmmmmdCccclxxXXviiII = mmmMMdcccclxxxxviiii.

The addition process accepts two completely represented numerals and produces one
completely represented numeral preserving the numeral representation convention.

The above numerals are formatted for readability but there is still no intrnsic association
differentiation.

mmmmMDCCCcLxxXXViIII = mmimVxIMDxICXmXCICcL = … = 1878
The only association relation is that all the conditions are collectively associated at a single

place of common association.

2.4.4. Order from chaos
As shown in Figure 2.9 the indiscriminately associating conditions of two Roman numerals,

autonomously add themselves in a dependent progression of proximity of association
completeness fulfillments and interactions to a necessarily last fulfillment and interaction which
completes the sum and produces the condition Z singularly indicating the addition is completed.
The Z condition might open the bag and spill the result or it might perform a coordination duty
within the bag.

Interaction propensities for M,m
[m,m,m,m,m,m,m,m,m,m,m] => [m,m,m,m,m,Z]
[M,m,m,m,m,m,m,m,m,m,m] => [M,m,m,m,m,Z]
[M,M,m,m,m,m,m,m,m,m,m] => [M,M,m,m,m,Z]
[M,M,M,m,m,m,m,m,m,m,m] => [M,M,M,m,m,Z]
[M,M,M,M,m,m,m,m,m,m,m] => [M,M,M,M,m,Z]
[M,M,M,M,M,m,m,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,m,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,M,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,M,M] => [M,M,M,M,M,Z]

A Journey Through Computatuion 2/21/25, 11:39 AM

15 Copyright © 2024 by Karl Fant

cCCCCcccC

LLl

xxXXxxXXX

VVv

iIIIiiIIiIII

V

xxXX

L

D

cCCC

inputs

mmmmMmmmmmMmmmmM

outputs

Z done

iiii

v

xxxx

l

d

cccc

mmmMM

M

D
C

L

XV

I

C

C

C

X
I

I

X
X

I
I

d

c
c

c

c

x

x
x

x
l

vm
m

m

m

m

m

mi

i

i V

X

L

C

DDd
D

M

iiII

v

xxXX

l

Cccc

d

mmmmm

Figure 2.9. Modified Roman numeral addition in shaking bag.

2.5. Interlude: Pure condition differentiation
A pure condition interaction is persistences asserting differentness of conditions with

different propensities of interaction indiscriminately associating within a single place of common
association (the shaking bag). Inside the bag there is no agency of central influence and there is
no agency of explicit control. The persistences and their asserted conditions behave individually
and independently. The only influence on their behavior is the confinement of the bag and its
shaking. There is no ambiguous behavior that needs to be isolated or hidden. There is no need of
any assistance or influence from outside the bag.

2.5.1. Search
The bag is not shaking to perform searches and realize interactions yet its shaking enables

searches and realizes interactions. A persistence and its asserted differentness condition with its
specific interaction propensity has no intrinsic agency to perform a search to fulfill its interaction
propensity yet inside the shaking bag the condition will experience a journey of encountering
many other conditions with which it does not interact and then find one condition with which it
does interact.

2.5.2. Dependency and completeness
Dependency of interaction relations are expressed by the differentness of the conditions and

their specific propensities to interact with other different conditions. An interaction occurs only
with complete proximate association of interacting differentnesses which coordinates the
interaction behaviors. The appearance of the result differentness and the disappearance of the
interacting differentnesses indicates, that the different interacting conditions were completely
proximate, that the interaction has completed and that the result differentness is the correct
resolution of the interacting differentnesses. This is the completeness of input criterion.

2.5.3. Concurrency
There can be a multitude of pure condition interactions with mutually disjoint condition sets

and interaction propensities concurrently realizing independent progressions of dependent
condition interactions in a single frothing sea of conditions.

2.5.4. Real pure condition expression
Pure condition is the expressional form of a biological cell which is a single place of

common association filled with thousands of different protein conditions with specific
interaction propensities supporting the intermingled expression of thousands of different

A Journey Through Computatuion 2/21/25, 11:39 AM

16 Copyright © 2024 by Karl Fant

1. See “https://en.wikipedia.org/wiki/Roman_numerals”.

interactions proceeding concurrently and continually without ambiguity. The cell as a whole in
complete control of itself.

2.5.5. Place and time in the shaking bag
There is no referential where or when inside the bag. There is no consistent or coherent

metric of temporal or spatial relations among the persistences, their conditions of differentnesses
or among their interactions within the chaos of the shaking bag yet fully determined interaction
occurs. Trying to relate the bag to an external metric of space or of time contributes nothing to
either understanding or to realizing pure condition interaction.

2.5.6. A first principle fulfilled
In a pure condition expression, differentness spontaneously and dependently interacting and

changing (first sentence of chapter) is a complete and sufficient accounting in itself of its
interactions with no ambiguous behavior in need of being isolated or hidden and in no need of
any extrinsic support from outside the bag.

The journey continues in Chapter 3 exploring the static association of persistences and their
asserted conditions.

A Journey Through Computatuion 2/21/25, 11:39 AM

17 Copyright © 2024 by Karl Fant

Chapter 3:
Association Differentiation

3
In Chapter 2 persistences associated indiscriminately and conditions interacted specifically.

All expression of differentness was in terms of differentness of condition with no differentiation
in terms of association of persistences. In this chapter persistences will associate specifically and
conditions will interact indiscriminately (all conditions interact with each other). All expression
of differentiation will be in terms of differentness of association with no differentiation in terms
of differentness of condition. Interaction will be determined by direct static association of
persistences rather than by interaction propensity of conditions. Each persistence will be different
from all other persistences not by the differentness of the conditions it asserts but by the
differentness of its place in a network of static association relations.

3.1. The behavior of statically associated persistences
An individual persistence has no associational structure, is not directional, has no input or

output, no top or bottom, no right or left. Associated persistences asserting conditions with
compatible interaction propensities will be continually asserting a condition to each other, each
continually fulfilling an interaction propensity and continually changing its asserted condition in
response. Associated persistences whose asserted conditions do not continually and
indiscriminately interact have no significance.

3.1.1. Undirected continual interaction
If the conditions of associated persistences and their interaction propensities are identical as

shown at the left of Figure 3.1 then the conditions of the associated persistences will interact
continually and indiscriminately in all directions even with themselves.

[N,N] -> D
[N,D] -> D
[D,N] -> D
[D,D] -> N

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> D
Y -> N

Figure 3.1. Undirected interaction of associated persistences.

A persistence can avoid interacting with its own conditions by being responsive to one set of
conditions and by asserting a different set of conditions. But if it associates with a second
persistence that is responsive to its asserted conditions and which asserts condition to which it is
responsive, as at the right of Figure 3.1, they are dependent on each other, feed back to each
other and continually interact with each other.

3.1.2. Directionalizing interaction behavior
To avoid the continual mutual interaction requires a linear association of three persistences

with complementary condition interaction propensities each responsive to and asserting a
different set of conditions as illustrated in Figure 3.2.

A Journey Through Computatuion 2/21/25, 11:39 AM

18 Copyright © 2024 by Karl Fant

S -> N
T -> D

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> S
Y -> T

BA C

Figure 3.2. Directionalizing the behavior of statically associated persistences.

• Persistence A is responsive only to conditions N and D and asserts only conditions X and Y.
• Persistence B is responsive only to conditions X and Y and asserts only conditions S and T.
• Persistence C is responsive only to conditions S and T and asserts only conditions N and D.
• Persistence C is dependent on persistence B
• Persistence B is dependent on persistence A and not dependent on persistence C
• Persistence A is not dependent on persistence B and not dependent on persistence C.
• The relations of dependency become directionalized.

Conditions N and D asserted by persistence C do not associate to persistence A and do not
influence the responsive behavior of persistence A. The X and Y conditions and the S and T
conditions of persistence B are buffering conditions that separate the persistence C assertion of N
and D from the responsivity of persistence A to N and D. It does not matter what persistence B’s
buffering conditions are as long as they connect A and C and are different from N and D.

The linearly associated persistences form a directionalized association interaction
behavior sensitive to and asserting the same set of conditions N and D. Identical input and
output conditions are different because they are at different isolated places of association in
relation to the interaction behavior. The directionalized association interaction behavior
establishes a new form of representing interaction differentness in terms of differentness of
place of association.
3.1.2.1. Practical directionalized interaction behaviors

A switch, Figure 3.3a, is a directionalized association interaction behavior. In Figure 3.3 the
colors of the switches correspond to persistences A, B and C. An electromagnetic switch receives
an input current condition that influences a magnetic field condition which influences a physical
position condition which influences an output current condition which is isolated from the input
current by interaction through two different condition domains.

c. Transistorb. Vacuum tubea. Electromagnetic switch

electromagnet

spring

lever current
source

input current

output
current

current source

input
voltage

output voltage

grid
input

voltage

current source

output current

Figure 3.3. Switches isolate and directionalize condition transition flow.

A Journey Through Computatuion 2/21/25, 11:39 AM

19 Copyright © 2024 by Karl Fant

An electronic tube, Figure 3.3b receives a voltage condition which influences a charge
condition on the grid which influences an electron flow condition through the vacuum which
influences the output voltage condition on the wire which does not feed back to and influence the
input voltage condition.

A transistor, Figure 3.3c, receives a voltage condition on the gate influencing the charge
condition in the channel which influences the electron flow condition through the channel which
influences the voltage condition at the output which does not feed back and influence the input
voltage condition.

A neuron receives input on its dendrites and asserts output on its axon which output does not
feed back through the neuron to influence its dendrites

3.1.3. Differentiating interaction behavior
Directed interaction behaviors can be characterized in terms of the condition interaction

propensities embodied by persistence A and the assertions of persistence C. As shown in Figure
3.4 directed interaction behaviors named “one of” and “all of” are defined in terms of the
response of persistence A to condition combinations and the condition it asserts which plays
through to persistence C which asserts the result condition for the interaction behavior.

Each type of interaction behavior can be represented with a unique graphic indicating each
unique set of interaction propensities as at the bottom of Figure 3.4.

[N,N] -> N
[N,D] -> D
[D,N] -> D
[D,D] -> D

[N,N] -> N
[N,D] -> N
[D,N] -> N
[D,D] -> D

“all of”“one of”
BA Cinput output BA Cinput output

a b c a b c

S -> N
T -> D

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> S
Y -> T

S -> N
T -> D

[N,N] -> X
[N,D] -> X
[D,N] -> X
[D,D] -> Y

X -> S
Y -> T

Figure 3.4. Basic interaction behaviors

3.1.4. Directed networks of directed interaction behaviors
Since every interaction behavior recognizes and asserts the same set of conditions and

isolates its output from its input, associated interaction behaviors are assured to interact enabling
the indiscriminate association of interaction behaviors output to input into directed networks of
dependent interaction behavior. Dependency networks of directed interaction behaviors can be
represented by stretching persistence C to associate with persistence A of other behaviors as on
the left of Figure 3.5. Persistence C can be stylistically extended to represent association as on
the right.

A Journey Through Computatuion 2/21/25, 11:39 AM

20 Copyright © 2024 by Karl Fant

Primitive interaction behaviors
associated output to input

C/1

C/0

A/1

A/0

B/1

B/0

a b c

a b c

a b c

a b c

a b c

a b c

Primitive interaction behaviors
associated with extended output

a b c
a b c

a b c

a b c
a b c

a b c

A/1

A/0

B/1

B/0

C/1

C/0

Figure 3.5. Representations of directed networks of interaction behaviors.

3.1.5. Association differentiation
• Each interaction behavior isolates its input from its output.
• The output of each interaction behavior in a network associates only to the inputs of other

interaction behaviors.
• The D or N condition asserted by each interaction behavior is different from the identical D

or N condition asserted by every other interaction behavior in the network by virtue of each
behavior isolating its input from its output as shown in Figure 3.6.

a b c
a b c

a b c

a b c
a b c

a b c

isolated places of
association differentness

isolated places of
association differentness

Figure 3.6. Interaction behaviors isolating different places of association.

3.1.6. Differentiating instances of interaction behavior
The coordination of interaction is accommodated here the same way it was accommodated in

chapter 2, with completeness of interactive association. In chapter 2 coordination was expressed
in relation to emptiness with the appearance of proximate completeness of interacting
differentness conditions initiating an interaction and then the disappearance of the interacting
differentness conditions and the appearance of the interaction result condition indicating the
complete fulfillment of the interaction. This appearance and disappearance of completenesses
bounds and differentiates instances of primitive interaction behavior (section 2.3.2).

For an association interaction behavior, continually presented with input conditions and
continually asserting its output conditions there is no bounding of interaction conditions. No
absence or emptiness separating one condition interaction from a next condition interaction as
there is in the shaking bag. Conditions are continually presented to the input of a behavior and its
output condition continually responds to its presented input conditions. This poses two
difficulties.

A Journey Through Computatuion 2/21/25, 11:39 AM

21 Copyright © 2024 by Karl Fant

• One: a next presentation of interaction conditions may require two or more inputs to
transition. They will not transition simultaneously and the output can respond with a
temporarily spurious condition to an incompletely transitioned input.

• Two: some input presentations may map to the same output condition and the transition of
presented input from one interaction input to another may not cause the output to transition.
If the output condition does not transition there is no intrinsic interaction behavior that
differentiates instances of interaction.

These difficulties are identical to the Boolean logic difficulties of section 1.5 and, are
resolved as follows.
3.1.6.1. Define an explicit representation of emptiness

These difficulties are addressed by assigning one condition N to explicitly represent “Not an
interaction differentness” while assigning all the other available conditions, in this case only D,
to represent “an interaction Differentness”. Condition N represents the absence of, emptiness of,
interaction differentness. Condition D represents the presence of interaction differentnesses. A
transition from N to D represents an appearance of interaction differentness from an absence/
emptiness of interaction differentness. A transition from D to N represents a disappearance of
interaction differentness into a non differentiating emptiness of interaction differentness.
3.1.6.2. Define two disjoint domains of completeness

Define a representation of “D completeness” which is a pattern of D assertion in a
background of N assertion.

Define a representation of “completely N” which is all N assertions with no D assertions, i.e.
completely empty of interaction differentness.

Interaction occurs with the appearance of D completeness.
3.1.6.3. Require monotonic transition between completeness representations

Each interaction behavior will begin with a transition from completely N to D completeness,
the appearance of completeness of interaction differentnesses. Each interaction behavior will end
with, a transition from D completeness to completely N, the disappearance of the interaction
differentnesses.

The monotonic transitioning between D completeness and completely N shown in Figure 3.7
unambiguously differentiates successive instances of D completeness.

D
completeness

completely
N

completely
N

completely
N

completely
N

D
completeness

D
completeness

Figure 3.7. Monotonic transition of condition completeness relations.

3.2. Primitive interaction behaviors: sufficient expressivity
Define primitive interaction behaviors that transition their output only with presentation of

input completeness fulfilling the completeness of input criterion (section 2.5.1). A primitive
interaction behavior begins empty with inputs completely N and its output asserting N. When the
inputs transition to D completeness the output transitions to D which is maintained until the input
transitions to completely N at which point the output transitions to N which is maintained until

A Journey Through Computatuion 2/21/25, 11:39 AM

22 Copyright © 2024 by Karl Fant

the input transitions to D completeness at which point the output transitions to D which is
maintained until the input transitions to completely N and so on.

Primitive behaviors fulfilling the completeness of input criterion can be realized with
primitive behavior interaction propensities arranged according to the interaction tables shown in
Figure 3.8 which also shows the graphic representation and the textual representation of each
interaction behavior. The “–” means that no output transition occurs. The transition of the output
between D and N reflects the transition of the input between D completeness and completely N.
Enclosing braces { } indicate “one of” related behavior for which D completeness is one input at
D and the rest at N. Enclosing brackets [] indicate “all of” related behavior for which D
completeness is all inputs at D and none at N. Completely N is the same for all behaviors with all
inputs at N, empty of interaction differentness. <= or => indicates “is dependent on”

{A, B}=>Z

D
D

D
N

N
D

D N
B

A

-> Z

D
D

DD
N

DN
D

D D
BC

A

D D
D N

ND
NN

-> Z
D
D

D
N

N
–

– N
B

A

-> Z

D
D

DD
N

DN
–

– –
BC

A

– –
– N

ND
NN

-> Z

{A, B, C}=>Z [A, B]=>Z [A, B, C]=>Z

B
A Z B

A

C
Z B

A Z B
A

C
Z

“one of” “all of”“all of”“one of”

Figure 3.8. Primitive interaction behavior interaction propensities.

The “all of” relation, mutual inclusivity

Z<=[A B C]

If “all of” A and B and C transition from N to D then Z will transition to D. When “all of” A
and B and C have transitioned to N then Z will transition to N.

The “one of” relation, mutual exclusivity

Z<={A B C}

If “one of” A or B or C transitions from N to D then Z will transition to D. If a second input
transitions to D then Z, already at D, does not transition. When “all of” A and B and C have
transitioned to N then Z will transition to N.

Primitive interaction behaviors are differentiated only in terms of the appreciation of their
input to D completeness. The transition of input to completely N is universal for all behaviors.
The behavior of the primitive interaction behaviors is illustrated in Figure 3.9.

A Journey Through Computatuion 2/21/25, 11:39 AM

23 Copyright © 2024 by Karl Fant

“all of”

“one of”

D
completeness

completely
N

completely
N

D
N

“one of”

“all of”

one instance of behavior interaction

Figure 3.9. primitive behavior with monotonic completeness transition behavior.

The “all of” behavior is similar to the Muller C element which is generally viewed as a
binary control operator in contrast to an interaction mapping behavior.1 The “one of” behavior is
identical to Boolean OR. The derivation of both elements here is quite different from their
historical development.
3.2.1.1. The difficulties of section 3.1.6 are resolved.
• Fulfilling the completeness of input criterion a primitive behavior does not assert spurious

output transitions due to incompletely presented input.
• Because of the monotonic transitioning between D completeness and completely N and

fulfillment of the completeness of input criterion (section 3.3.1) every primitive behavior
interaction is unambiguously differentiated by the transition of its output to D followed by its
transition to N.

3.2.1. Non interaction behaviors
There are two primitive behaviors that do not participate in the interactions of differentnesses

but that participate in the coordination of the dependent flow of interaction behavior.
The first behavior on the left of Figure 3.10 is referred to as conversion because it is used in

network closure to convert between the two disjoint domains of completeness representation D
and N (section 3.7). Conversion does not invert between two interaction differentnesses as a
Boolean logic inversion does and never appears in an interaction dependency relation. The
inverter symbol is still used because it is convenient and should be easily understood in context.

The single tilde ~ represents a conversion that is forced to N during initialization to allow an
initial completely N wavefront to propagate through a network (Appendix D). The double tilde
~~ represents a conversion that is not forced to N during initialization which is used only when
initializing to D completeness (Appendix E).

The second behavior on the right of Figure 3.10 is the mutex/arbiter, represented textually
as {{ }}, that enforces two otherwise uncoordinated wavefront flows to flow mutually
exclusively. In Figure 3.10 A flows to A and B flows to B but only “one at a time” turning two
uncoordinated flows into a coherent “one of” related flow (Appendix C and section 4.9.3). The
arbiter can be viewed as an enforcing “one of” behavior. The mutex/arbiter is a well understood
component of asynchronous design.2

A Journey Through Computatuion 2/21/25, 11:39 AM

24 Copyright © 2024 by Karl Fant

n
init

initializing
conversion

~ {{Ain Bin => Aout Bout}}

MUTEX/arbiter
M
U
T
E
X

Ain Aout
Bin Bout

arbiter

conversion

~~

ND
N D

Figure 3.10. Non interacting flow coordination behaviors.

3.3. INTERLUDE: Sufficiently expressive primitivity
Each primitive interaction behavior expresses one primitive step of mapping (interaction),

condition holding behavior (memory) and input completeness appreciation (coordination). These
primitive interaction behaviors along with monotonic transitioning between D completeness and
completely N enable all that follows in terms of association differentiation. A static structure of
differentness collaborates with a dynamic structure of differentness to stably express
computation. It will be shown by the end of this chapter that these primitive behaviors are
sufficiently expressive on their own intrinsic behavioral merits and in no need of any extrinsic
assistance.

3.3.1. Completeness of input criterion
A primitive behavior transitions its output only when its input is presented with D

completeness or completely N. The transition of the output implies the presentation of
completeness of input and the completion of the interaction behavior.

3.3.2. Constant behavior
The primitive interaction behaviors are constant in that they always assert the same output

differentness for the same presented completeness of input differentness allowing the primitive
interaction behaviors to be indiscriminately referenced from and copied to anywhere and
anywhen. In particular, the primitive interaction behaviors can be referenced and copied to
compose networks of dependently related primitive behaviors.

3.3.3. The environment
A primitive behavior is entirely dependent on the presentation of input from an environment

external to itself. If there is no transition of input presented there is no behavior.

By the end of this chapter interactions will behave independently of the environment which
will no longer have any behavioral responsibility.

The responsible environment
If the input conditions presented by the environment to a primitive interaction

behavior monotonically transition between D completeness and completely N with an
appropriate delay between transitions then the output of the primitive interaction
behavior will monotonically and correctly follow the transitioning of the input.

The environment establishes the presentation of input differentnesses for each
primitive interaction behavior and establishes the behavior interaction time. The
mathematician with pencil and paper is an exemplar of a responsible environmental.

A Journey Through Computatuion 2/21/25, 11:39 AM

25 Copyright © 2024 by Karl Fant

3.3.4. Primitive behavior space and time
A primitive interaction behavior performs one atomic instance of interaction of differentness

behavior between atomic places of association in one instance of interaction time represented by
the transition of a behavior’s output from N to D and back to N. The succession of presentations
of D completeness and completely N use and unuse the primitive behavior in different instances
of interaction time extending the representation of differentness of the primitive behavior
through time.

3.4. The constant network: composing primitive behaviors
Primitive interaction behaviors linearly associated output to input form a network of

dependency relations among the primitive interaction behaviors that always asserts the same
output differentness for the same presented input differentness. A constant network is
indiscriminately referencable from and copyable to anywhere and anywhen. In particular,
constant networks can be referenced and copied to compose larger constant networks.

3.4.1. Interaction dependency relations
Interaction dependency relations are expressed in terms of mutually inclusivity and

mutually exclusivity. The completeness relations of mutual inclusivity [] (all at a time, “all of”)
and mutual exclusivity { } (one at a time, “one of”) permeate interaction expression.

An interaction is a mutual inclusion (input completeness) of mutual exclusivities (individual
input differentnesses) dependently interacting through a mapping relation to produce a mutual
exclusivity (output) which proceeds on to participate in the mutual inclusivity of a next
interaction.

In the pure condition expression of Chapter 2 each persistence mutually exclusively asserted
one at a time of a range of possible different conditions. Interaction occurs when persistences
asserting the interacting conditions are mutually inclusively proximately associated. The
interaction produces one result differentness condition from a range of mutually exclusive
possible result differentness conditions which proceeds to mutually inclusively associate with
other conditions to interact and produce a next mutually exclusive result differentness and so on.

The primitive behaviors are minimal relations of mutual inclusivity and mutual exclusivity
from which larger relations of mutual inclusivity and mutual exclusivity are constructed. Figure
3.11 shows a network of dependently associated “one of” and “all of” primitive behaviors.

3.4.2. Differentness of place of association
In a network of primitive interaction behaviors associated output to input, the output of each

interaction behavior is a unique differentness of place of association within the network as
illustrated in Figure 3.11 (section 3.1.5).

A Journey Through Computatuion 2/21/25, 11:39 AM

26 Copyright © 2024 by Karl Fant

C/1

C/0

A/1

A/0

B/1

B/0

isolated places of
association differentness

isolated places of
association differentness

Figure 3.11. Differentness of place of association in a network of primitive interaction
behaviors associated output to input.

If a primitive interaction behavior asserts condition D it expresses the differentness
represented by its unique place of association. If a primitive interaction behavior asserts
condition N it does not expresses the differentness represented by its unique place of association
which is empty of differentness.

Condition D is the only condition expressing interaction differentness. There is no longer any
differentiation of interaction differentness in terms of condition. This is pure association
differentiation with all interaction differentness represented by differentness of place of
association and specificity of interaction represented by direct association. This is in contrast to
pure condition differentiation (Chapter 2) in which all interaction differentness is represented by
differentness of condition and specificity of propensity of condition to interact.

3.4.3. Localities of interaction differentness
Each place of association differentness is a primitive interaction differentness. Places of

association differentness are associated to form localities of interaction differentness which are
the places in the network between the associated primitive behaviors which represent the
differentnesses that interact through the primitive behaviors. One differentness from a range of
mutually exclusive interaction differentnesses is asserted when the primitive behavior outputs
forming a locality transition from completely N to D completeness and then unasserted when the
primitive behavior outputs transition to completely N.

A locality represents two differentnesses that determine its significance:

1. A locality asserts a single differentness from a range of possible mutually exclusive
differentnesses.

2. A locality represents a unique place of differentness within the association network of
dependency relations. A same differentness from a range of mutually exclusive
differentnesses, the number 4 for instance, can be expressed by multiple localities and
each expression is different by virtue of the differentness of place of association of the
locality.

A locality’s differentness of place of association and its asserted differentness together
represent a unique significance within an interaction.
3.4.3.1. Locality differentness

A, B and C in Figure 3.11 are localities of mutually exclusive differentness each of which
can express “one of” its mutually exclusively differentnesses “at a time”. Each locality consists
of two places of association differentness. Each place can assert “one of” conditions D or N.

A Journey Through Computatuion 2/21/25, 11:39 AM

27 Copyright © 2024 by Karl Fant

Each locality expresses a mutually exclusive differentness with “one of” its places of association
transitioning to D and the other place remaining at N (D completeness). A locality is empty of
differentness when all of its places are asserting N (completely N).

Multi-rail and particularly dual-rail encoding has long been understood as a delay insensitive
encoding for differentness (information) transfer with “N” typically referred to as a spacer state.3
It has been less well understood as a fundamental aspect of interaction differentness.

A network of associated primitive behaviors is also a network of interacting localities.
3.4.3.2. Expressing locality differentness

Differentnesses of a locality are expressed in terms of mutually exclusive, “one of”, and
mutually inclusive, “all of”, withiness relations. For instance the locality named C of Figure 3.11
can assert “one of” two places of association named 1 and 0 each of which can assert “one of” D
or N is represented as two “one of” relations expressed as:

C/{1 0}/{D N}

The slash / indicates withiness distribution. The braces { } indicate “one of” related. The
above expression distributively expands to:

C/{1/{D N} 0/{D N}}

The three localities A, B and C of Figure 3.11 are expressed as

A/{1 0}/{D N} B/{1 0}/{D N} C/{1 0}/{D N}

Since every place of association can only assert D or N the {D N} term is a universal most
primitive terminal and can be implied with a terminal dangling slash.

A/{1 0}/ B/{1 0}/ C/{1 0}/

Which expands to:

A/{1 0}/{D N} B/{1 0}/{D N} C/{1 0}/{D N}

A, B and C which all have the same locality structure can also be represented as:

(A B C)/{1 0}/

Which distributively expands to

A/{1 0}/ B/{1 0}/ C/{1 0}/

and so on.
The differentnesses of a locality are referenced as

A/1 A/0 B/1 B/0

and so on

E/{3 2 1 0}/

Expresses a locality named E with four mutually exclusive differentnesses named 3, 2, 1 and
0 represented as four places of association only one of which will assert D at a time.

Localities with larger ranges of interaction differentness are composed by associating
localities with small ranges of interaction differentness (section 3.4.8.).

A Journey Through Computatuion 2/21/25, 11:39 AM

28 Copyright © 2024 by Karl Fant

Localities mirror the persistences of pure condition differentiation of Chapter 2 as locus of
interaction transition and bearer of mutually exclusive differentness.

3.4.4. Expressing a constant network
A constant network expression, enclosed in parentheses, includes an expression reference

name, a binding portal specifying the localities exposed to the external environment with their
input to output dependency relation, the specification of referenced internal localities and the
dependency relations among the localities and behaviors of the network.

Template of association network expression

(name (input localities => output localities)
(internal localities)
 dependency relations)

binding portal localitiesbound reference name

In Figure 3.11 locality A expressing a mutually exclusive differentness and locality B
expressing a mutually exclusive differentness mutually inclusively associate to interact and
produce the mutually exclusive differentness of locality C. The expression below completely
expresses the network. To keep directionality conveniently visible input localities are shown in
blue and output localities are shown in red. There are no internal localities in this expression. In
Figure 3.12 the primitive behaviors “one of” and “all of” are referenced respectively with { }
and [] encompassing a list of input association places composed with nesting relations as with:

{[A/0 B/1] [A/1 B/0]}

C/1

C/0

A/1

A/0

B/1

B/0

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)
C/{ 1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

binding portal localitiesbound reference name

dependency relations

Figure 3.12. Network expression for Figure 3.11

The expression reference name is net. The binding portal expresses that output locality C is
dependent on, =>, the input localities A and B. The specific dependency relations of the network
are expressed by recapitulating the expression of output assertion locality C and nesting within
the recapitulated expression the dependency relation, <=, for each component of the locality, {1
0}, on components of input localities A and B in terms of the primitive behaviors “all of” [] and
“one of” { }. For instance, [A/0 B/1] represents an “all of” behavior dependent on inputs A/0
and B/1. If both A/0 and B/1 assert D then the “all of” relation asserts D. {[A/0 B/1] [A/1 B/0]}
represents a “one of” behavior dependent on [A/0 B/1] and [A/1 B/0]. If “one of” the relations
[A/0 B/1] or [A/1 B/0] asserts D then the “one of” relation {[A/0 B/1] [A/1 B/0]} will assert D.

If the term {[A/0 B/1] [A/1 B/0]} resolves to D then C/1 transitions to D. If the term {[A/0 B/
0] [A/1 B/1]} resolves to D then C/0 transitions to D. Only one of the terms will resolve to D.
The mutual exclusivity of the terms traces back to the mutually exclusivity of the differentnesses
of locality A, the mutual exclusivity of the differentnesses of locality B and their cross
association (section 3.4.7).

A Journey Through Computatuion 2/21/25, 11:39 AM

29 Copyright © 2024 by Karl Fant

The expression of the localities and their dependency relations map directly to the network of
Figure 3.11.

3.4.5. The binding portal
There are three forms of dependency association relation. The binding portal serves as an

association hub expressing all three association relations.
1. One to one relations

The binding portal allows the network to be referenced externally and to associationally
bind each portal locality with differently named external locality (section 3.4.5.1).

2. Many to one relations
A binding portal typically maps multiple inputs to a single output (section 3.4.5.2).

3. One to many relations
The binding portal associates each input locality by name correspondence to multiple
places of association within the dependency expression (section 3.4.5.3).

3.4.5.1. One to one reference association through the exposed binding portal
A network expression is exposed to reference by an external environment through its binding

portal in terms of its expression reference name and the syntax structure of its binding portal. The
only name within a network expression that is externally visible is the expression reference
name. All other names within the expression can only be referenced from within the expression.
The same names can be reused outside the expression without ambiguity.

External locality names are bound to internal locality names by corresponding syntax
structure in relation to the expression reference name. There are three ways of referencing a
network expression through its binding portal:

with full portal reference,

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/) )

net (X Y => Z)

with locality nesting,

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/) )

Z<=net (X Y)

or with portal nesting.

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/) )

A(.....B(......net (X Y)......))

With full portal reference and locality nesting the output locality named C is referenced by
the external locality named Z which can be further referenced distributing the differentness of
locality C. Portal nesting is an unnamed one to one relation which does not support further
reference to and distribution of the differentness of locality C.

All of these variations of reference are used in the examples.

A Journey Through Computatuion 2/21/25, 11:39 AM

30 Copyright © 2024 by Karl Fant

3.4.5.2. Many to one association in the binding portal
The many to one association of input to output in the binding portal.

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)

3.4.5.3. One to many association into the dependency relations of a network
The binding portal distributes the differentness of each of its localities by name

correspondence association into the expression of dependency relations.

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)

C/{ 1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

binding portal localitiesbound reference name

dependency relations

3.4.5.4. The external environment
A binding portal exposes a constant network to a presentation from an uncharacterized

environment beyond its binding portal on which presentation the constant network is completely
dependent for its liveness (no presentation no network behavior), its temporal reference (with the
monotonic transitions between D completeness and completely N) and to provide variability of
behavior (The constant network itself is constant. Its behavior varies only with the differentness
of its presented input). The external environment is in complete control of the constant network
through its binding portal.
3.4.5.5. Network wholeness

The binding portal bounds the network with input and output and defines its wholeness of
interaction behavior. This wholeness of network interaction behavior is not a wholeness of
expression which extends through the binding portal into the environment not accounted by the
constant network.

3.4.6. Wavefronts of transition
A transition wavefront consists of behaviors transitioning their output in response to

transitioning of presented input which transitioned outputs are presented to the input of
subsequent behaviors which transition their output and so on. Flowing wavefronts of transition
shuttle the weft of transition differentness through the warp of network differentness weaving the
fabric of computation.

An interaction begins with a transition to completeness of presentation of one or more
interacting differentnesses to the input of the exposed binding portal of a constant network which
initiates a wavefront of transition flowing through the network to its binding portal output. This
wavefront of transition flow from the completeness of presented input to the completeness of
output must be unambiguous for all possible input presentations and all possible internal delay
relations.
3.4.6.1. The unambiguous wavefront of transition to D completeness

Figure 3.13 illustrates a transition to D completeness wavefront flowing through the constant
network of Figure 3.11 followed by the transition to completely N wavefront. The constant
network begins empty of interaction differentness with all localities completely at N, Figure

A Journey Through Computatuion 2/21/25, 11:39 AM

31 Copyright © 2024 by Karl Fant

3.13a. The external environment transitions the input localities from completely N to D
completeness. A/0 transitions to D forming D completeness for locality A, Figure 3.13b, then B/
1 transitions to D forming D completeness for locality B, Figure 3.13c, forming network input D
completeness. The inputs are held at D completeness as a wavefront of transitions from N to D
begins flowing through the network. Because the inputs are held at D completeness, because of
the completeness behavior of the primitive interaction behaviors and because there are only
transitions from N to D with no transitions from D to N there are only correct transitions flowing
through the network. There are no incorrect or spurious transitions: no glitching.

Due to the cross association, the output assertion of the network C transitioning to D
completeness, Figure 3.13d, implies that all of the input has transition to D completeness, that
the consequent transition to D wavefront has propagated through the network and that the
transitioned output is the correct resolution of the presented input as well as the necessarily last
transition to completeness of the wavefront flow through the network indicating completeness of
interaction (section 3.4.7.2). The transition of the output to D completeness corresponds to the Z
condition of the Roman Numeral example of Chapter 2
3.4.6.2. The unambiguous wavefront of transition to completely N

The transition to D completeness wavefront is followed by the external environment
presenting a transition to completely N to the input. A/0 transitions to N forming completely N
for locality A, Figure 3.13e, then B/1 transitions to N forming completely N for locality B,
Figure 3.13f. The inputs are held at completely N as a wavefront of transitions from D to N
begins flowing through the network. Again, because the inputs are held at N, because of the
completeness behavior of the primitive interaction behaviors and because there are only
transitions from D to N with no transitions from N to D, there are only correct transitions flowing
through the network. There are no incorrect or spurious transitions: no glitching.

Again, due to the cross association, when the output of the network C transitions to
completely N, Figure 3.13g, it implies: that the input transition to N wavefront is complete, that
the transition to N wavefront has propagated through the network and that the network is
completely empty of interaction differentness (excepting orphans, see section 3.4.7.1 and
3.4.7.2).4

A Journey Through Computatuion 2/21/25, 11:39 AM

32 Copyright © 2024 by Karl Fant

N
D

C/1

C/0

A/1

A/0

B/1

B/0

Empty network
completely N

A/0 transitions to D B/1 transitions to D
D completeness of input

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

A/1

A/0

B/1

B/0

B/1 transitions to N A/0 ransition to N
completely N input

The transition to N wavefront flows
through the network.

end of interaction
The transition of C to completely N implies

that A and B have transitioned to
completely N , that the N wavefront flow
is complete and the network is empty.

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

A/1

A/0

B/1

B/0

The transition to D wavefront flows
through the network.

completeness of interaction
The transition of C to D completeness

implies that A and B have transitioned to
D completeness and that the D wavefront
flow is complete and that the interaction

is complete.

a b c

C/1

C/0

A/1

A/0

B/1

B/0 d

e f g

One instance of interaction and of interaction time

Figure 3.13. Flow of transition wavefronts through the network.

3.4.6.3. Singular appreciability
With unambiguous wavefront flow through the network the transition of the network output

locality to completeness is the only singularly appreciable event of a network interaction
marking one instance of interaction and one instance of interaction time. It is the network
counterpart of a temporal instant.
3.4.6.4. Multiple inappreciability

All other wavefront transition events in the network, inputs that can present all at once or in
any order and internal concurrent transition relations with differing delays that can occur all at
once or in any order are not singularly appreciable but are temporally incoherent in the context of
the constant network as a whole.
3.4.6.5. Network ephemeral instances of interaction

A constant network can perform only one interaction at a time. All transition behavior in the
network is subordinate to and dependent on presentation to the binding portal input and its
consequent wavefront flow through the network. A transition to D completeness wavefront
flowing through the network from its binding portal input presentation to its binding portal
output transition to D completeness and flowing out of the network into the external environment
is one instance of interaction for the network. Interaction result wavefronts don’t necessarily
end in the external environment. They are just unaccounted by the network after they flow out.

The following transition to completely N wavefront flowing through the network and
transitioning the output to completely N empties the network of interaction differentness
retaining no record, no history, of the instance of interaction.

With each transition to D completeness a network is used. With each transition to completely
N the network is unused. With the next transition to D completeness the network is reused. Each
instance of interaction occurs and then irretrievably disappears from the network.

A Journey Through Computatuion 2/21/25, 11:39 AM

33 Copyright © 2024 by Karl Fant

3.4.7. Recognizing presented input
To assert an output based on the differentness of its presented input a network must first

appreciate the presented input differentness. The input to the network forms a locality of
mutually exclusive differentness composed of the individual input localities. The mutually
exclusive differentnesses for locality A/{1 0}/ are named 1 and 0. The mutually exclusive
differentnesses for locality B/{1 0}/ are named 1 and 0. The two inputs cross associate to form a
composite range of mutually exclusive differentnesses named, 00 01 10 and 11, only one of
which is presented at a time by the two input localities.

“one of” A/1 or A/0 will assert D and “one of” B/1 or B/0 will assert D. Only one of the
cross associations will present DD which is appreciated by one of a rank of “all of” behaviors
searching for the one fulfilling cross association. The one appreciating “all of” behavior,
recognizing the presented input differentness, will transition its output to D determining whether
C/1 or C/0 transitions to D.

The output of the rank of “all of” behaviors is itself a locality of mutually exclusive
differentness which can be named and referenced explicitly expressing the cross association
search as in Figure 3.14 instead of it being implied in the nesting relations of the network
dependency expression as in the expression of section 3.4.4.

cross/0

cross/1

cross/2

cross/3

C/1

C/0

A/1

A/0

B/1

B/0

AB
00

01

10

11

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)
(cross/{3 2 1 0}/)
cross/{3<=[A/1 B/1]

 2<=[A/1 B/0]
 1<=[A/0 B/1]

 0<=[A/0 B/0] }0
C/{ 1<={cross/2 cross/1}
 0<={cross/3 cross/0} })

binding portal localitiesbound reference name

dependency relations

internal localities

Figure 3.14. The network expression with explicitly named cross association locality

3.4.7.1. Search failures - The orphans
As the transition to D wavefront propagates through a cross association search there are

ineffective search branches that fail to form cross association completeness which are called
orphans because they have lost their relations. In Figure 3.15a the effective search branches of
the transition to D completeness wavefront are highlighted in purple and the ineffective orphan
branches of the transition to D completeness wavefront are highlighted in green.

A Journey Through Computatuion 2/21/25, 11:39 AM

34 Copyright © 2024 by Karl Fant

d.

c.b.a.

N
D

D orphan

e.

Transition to D wavefront flow
showing orphan branches

Lingering orphan branches after
transition to N wavefront completeness

Transition to D wavefront corrupted
by lingering orphan branches

Orphan branches fully transitioned
after transition to N wavefront
Network completely empty

Undorrupted transition to D wavefront
flowing through completely empty
network

C/1

C/0

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

C/1

C/0

C/1

C/0

A/1

A/0

B/1

B/0

A/1

A/0

B/1

B/0

A/1

A/0

B/1

B/0

A/1

A/0

B/1

B/0

Figure 3.15. The orphans.

When the inputs presenting D completeness transition to completely N a wavefront of
transition to completely N propagates through the constant network. When C transitions to
completely N it implies that the input presentations have transitioned to completely N and that
the effective search branches of the transition to D wavefront have transitioned to N but it does
not imply that the ineffective orphan branches have transitioned to N which they may not have as
in Figure 3.15b.

There must be an assumption that every orphan branch will transition to N before the next
transition to D wavefront arrives at the branch. If the next transition to D wavefront arrives
before the orphan branches transition to N the search is corrupted as in Figure 3.15.c. The
differentnesses of locality C should never both be D. If the orphans transition to N before the
next transition to D wavefront arrives as in Figure 3.15d the next transition to D wavefront is not
corrupted and the result will be as in Figure 3.15 e.

It is shown in Appendix G, that if orphan paths are isolated to a branch and do not propagate
through a primitive interaction behavior then orphan branches will always transition to N well
before the next transition to D wavefront can arrive at the branch.

The orphan is similar to the Martin notion of the isochronic fork which has a more stringent
relative delay requirement because it relates to undefined external relationships of which worst
case behavior must be assumed.5 The orphan delay sensitivity is less stringent because it relates
well defined internal relationships.

Notice that in the pure condition expression of Chapter 2 search failures to form interactive
completeness do not have lingering implications. A persistence and its asserted condition simply
do nothing and continue searching (Section 2.3).
3.4.7.2. The completeness of input criterion

The completeness of the output must imply the completeness of all of the presented input.
The primitive behaviors fulfill the completeness of input criterion but a constant network does
not fulfill the completeness of input criterion by virtue of its composition with completeness of

A Journey Through Computatuion 2/21/25, 11:39 AM

35 Copyright © 2024 by Karl Fant

input fulfilling primitive behaviors. There can be networks that do not fulfill the completeness of
input criterion.

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

A/1

A/0

B/1

B/0

Figure 3.16. Fulfilling and not fulfilling the completeness of input criterion

The network on the left of Figure 3.16 fulfills the completeness of input criterion. The
network on the right performs the same interaction mapping behavior asserting the correct result
but it does not fulfill the completeness of input criterion. The output C/0 can transition to D with
just one input transitioned to D completeness.

The cross association not only recognizes the presented input but demands the completeness
of the presented input. This demand for completeness of input ensures that the asserted output of
the network will not transition until the input is completely presented. The singular transition of
the network output to completeness indicates that the input of the network has transitioned to
completeness, that the consequent wavefront has propagated completely through the network and
that the asserted output is the correct result for the presented input for both the transition to D
completeness and the transition to completely N.

3.4.8. Composing larger localities of interaction differentness
The cross association search in which two input localities each with a small range of

mutually exclusive differentnesses mutually inclusively combine to form a single locality with a
larger range of mutually exclusive differentness inspires the means of expressing localities with
large ranges of mutually exclusive differentness in terms of mutually inclusive combinations of
localities with small ranges of mutually exclusive differentness. A place value number, for
instance, is a locality of mutually inclusive range, “all of”, [] range of places each with a
mutually exclusive, “one of” { } range of digit diferentnesses.

A two bit binary number with a range of 4 mutually exclusive differentnesses is expressed as:

twobit/[1 0]/{1 0}/ which expands to twobit/[1/{1 0}/ 0/{1 0}/] which expands to
twobit/[1/{1 0}/{D N} 0/{1 0}/{D N}] which expands to
twobit/[1/{1/{D N} 0/{D N}} 0/{1/{D N} 0/{D N}}]

Examples of two bit locality are qtob/B and btoq/A in section 3.4.9.
A five bit binary number with a range of 32 mutually exclusive differentnesses is:

A Journey Through Computatuion 2/21/25, 11:39 AM

36 Copyright © 2024 by Karl Fant

fivebit/[4-0]/{1 0}/ which expands to fivebit/[4 3 2 1 0]/{1 0}/ which expands to
fivebit/[4/{1 0}/ 3/{1 0}/ 2/{1 0}/ 1/{1 0}/ 0/{1 0}/] which expands to
fivebit/[4/{1 0}/{D N} 3/{1 0}/{D N} 2/{1 0}/{D N} 1/{1 0}/{D N} 0/{1 0}/{D N}]

which expands to
fivebit/[4/{1/{D N} 0/{D N}}

 3/{1/{D N} 0/{D N}}
 2/{1/{D N} 0/{D N}}
 1/{1/{D N} 0/{D N}}
 0/{1/{D N} 0/{D N}}]

and so on. An example of five bit locality is fivebitadder/A in Section 3.4.10.2.
Bits are referenced as

twobit/1 fivebit/4 fivebit/3

Bit differentnesses are referenced as

twobit/1/0 fivebit/4/1 fivebit/3/0

and so on.

3.4.9. Composing larger constant networks
Larger constant networks are composed from smaller constant networks by associating

binding portal output to binding portal input. The first example is a composition of two
component constant networks. Network btoq converts a two digit binary radix 2 representation
to a one digit quaternary radix 4 representation. Network qtob converts quaternary back to
binary.

A Journey Through Computatuion 2/21/25, 11:39 AM

37 Copyright © 2024 by Karl Fant

A/1/1

A/1/0

A/0/1

A/0/0

B/3

B/2

B/1

B/0

btoq binding portal localitiesbound reference name

dependency relations

(btoq(A/[1 0]/{1 0}/ => B/{3 2 1 0}/)
B/{3<=[A/1/1 A/0/1]
 2<=[A/1/1 A/0/0]
 1<=[A/1/0 A/0/1]
 0<=[A/1/0 A/0/0] })

The components of locality B/[3 2 1 0] are dependent on relations among components of
input locality A[1 0]/{1 0}.

B/1/1

B/1/0

B/0/1

B/0/0

qtob
A/3

A/2

A/1

A/0

(qtob(A/{3 2 1 0}/ => B/[1 0]/{1 0}/)
B/[1{1<={A/3 A/2}
 0<={A/1 A/0}}
 0{1<={A/3 A/1}
 0<={A/2 A /0}}])

binding portal localitiesbound reference name

dependency relations

The components of locality B/[1 0]/{1 0}, are dependent on relations among components of
input locality A[3 2 1 0].

The two component constant networks are composed into a larger constant network named
biggernet by representing the dependency relation between binding portals with portal nesting,
locality nesting or full portal reference.

Composing with portal nesting and locality nesting

(biggernet(X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/)
Z<=qtob(btoq(X)))

bound reference name

dependency relations

binding portal localities

Composing with locality nesting

(biggernet (X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/) (Y/{3 2 1 0}/)
Y<=btoq(X)
Z<=qtob(Y))

bound reference name

dependency relations

binding portal localities internal localities

A Journey Through Computatuion 2/21/25, 11:39 AM

38 Copyright © 2024 by Karl Fant

Composing with full portal reference

(biggernet (X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/) (Y/{3 2 1 0}/)
btoq(X => Y)
qtob(Y => Z))

bound reference name

dependency relations

binding portal localities internal localities

Locality Z as a whole is dependent on the asserted differentness of qtob which is dependent
on the asserted differentness of btoq which is dependent on the presented differentness of X as a
whole. The intermediate locality Y is also dependent as a whole. All three of the above
dependency expressions specify the constant network of Figure 3.17.

X/1/1

X/1/0

X/0/1

X/0/0

Y/3

Y/2

Y/1

Y/0

Z/1/1

Z/1/0

Z/0/1

Z/0/0

btoq qtob

Figure 3.17. Composed constant network.

3.4.9.1. Associating exposed binding portals
When binding portals are associated a portion of the binding portals and a portion of the

previously uncharacterized external environments (section 3.4.5.4) just beyond the exposed
binding portals become incorporated into and fully characterized within the composite network.
The unassociated portions of the binding portals form the exposed binding portal of the new
composite network as a whole which retains the singular appreciability of its interaction as a
whole. The newly component networks become subordinate to and dependent on the new
exposed binding portal and its input wavefront of transition for their liveness and time (section
3.4.9.8).

No matter how big and complex a composed constant network becomes it never outgrows the
need for an exposed binding portal to an uncharacterized external environment in complete
control of the constant network (section 3.4.5.4).
3.4.9.2. Locality correspondence

When an output locality of one network is associated to an input locality of another network
the structure of the associated localities must correspond exactly in that they effectively express a
same single locality, just with different names. The structure of locality Z must match the
structure of locality qtob/B. The structure of locality X must match the structure of locality btoq/
A. The input locality structure of locality qtob/A must match the corresponding nested output
locality structure of btoq/B to which the intermediate locality Y must also correspond.
3.4.9.3. Inheritance of locality structure

One approach to expressing locality structure correspondence is to require that all locality
expressions be fully specified at all levels and that the structure of all dependently related
localities correspond. Another approach is to allow a locality to be referenced by name only and
to inherit its structure from an already fully expressed reference to the common locality. There

A Journey Through Computatuion 2/21/25, 11:39 AM

39 Copyright © 2024 by Karl Fant

can be multiple references to the same locality and they must all correspond. If some references
are partial they can be filled in from other references. The references among themselves must
compose to a single expression of the locality. The biggernet dependency expression above can
be rendered as:

(biggernet (X -> Z)
 Z<=qtob(btoq(X)))

Z inherits locality structure from qtob/B/[1 0]/{1 0}/ resulting in

Z/[1 0]/{1 0}/

X inherits its locality structure from btoq/A/[1 0]/{1 0}/ resulting in

X/[1 0]/{1 0}/

biggernet expanded with the inheritance is

(biggernet (X/[1 0]/{1 0}/ -> Z/[1 0]/{1 0}/)
 Z<=qtob(btoq(X)))

The biggernet dependency expression can also be rendered as:

(biggernet (X -> Z) (Y)
 Y<=btoq(X)
 Z<=qtob(Y))

with the inheritance including Y inheriting from btoq/B and from qtob/A:

(biggernet (X/[1 0]/{1 0}/ -> Z/[1 0]/{1 0}/) (Y/{3 2 1 0}/)
 Y<=btoq(X)
 Z<=qtob(Y))

Inheritance simplifies expression and reduces opportunities for errors.
3.4.9.4. Composing constancy and completeness behavior

If each component constant network of a composite constant network is constant (section
3.4) and fulfills the completeness of input criterion (section 3.4.7.2) then the composite constant
network as a whole will be constant and fulfill the completeness of input criterion. The point is
illustrated in Figure 3.18 showing a larger network composed with the network of Figure 3.11
copied three times.

The component network expression is:

(net(A/{1 0}/ B/{1 0}/ => C/{1 0}/)
C/{1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

The composed network expression is:

(bignet(W X Y Z => C)
C<=net(net(W X) net(Y Z)))

Which expands with inheritance to:

A Journey Through Computatuion 2/21/25, 11:39 AM

40 Copyright © 2024 by Karl Fant

(bignet(W/{1 0}/ X/{1 0}/ Y/{1 0}/ Z/{1 0}/ => C/{1 0}/)
C<=net(net(W X) net(Y Z)))

C
B

A completeness of C indicates
completeness of A and B

completeness of B indicates
completeness of Y and Z

completeness of A indicates
completeness of W and X

completeness of C indicates completeness of W, X, Y AND Z

A/1

B/1

A/0

B/0

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

N
D

Figure 3.18. The composition of completeness relations in bignet.

3.4.9.5. Constancy
The completeness of C is dependent through net C on the completeness of A which is

dependent through net A on the completeness of W and X and on the completeness of B through
net B which is dependent on the completeness of Y and Z. If A is constant in relation to W and
X and B is constant in relation to Y and Z and C is constant in relation to A and B then C is
constant in relation to W, X, Y and Z.
3.4.9.6. The completeness of input criterion

In Figure 3.18 the completeness of C implies the completeness of its two inputs A and B.
The completeness of A implies the completeness of W and X. The completeness of B implies the
completeness of Y and Z. Then the completeness of C implies the completeness of W, X, Y and
Z. If any of W, X, Y and Z are not completely transitioned C will not be completely transitioned.
This is the case for both the transition to D completeness and for the transition to completely N.
3.4.9.7. Concurrency

The transition to completeness of localities A and B are singularly appreciable events in
relation to net A and net B respectively. However in relation to bignet they are independent and
concurrent. The concurrent behaviors of net A and net B are coordinated by the completeness
behavior of net C. Figure 3.18 illustrates a transition to D presentation that is not yet complete.
W, X and Y have transitioned to D completeness but Z has not yet transitioned. C will transition
to D completeness only after Z transitions to D completeness.
3.4.9.8. Instances of interaction, wholeness and chaos

As constant networks are composed into larger composite constant networks the newly
component networks become dependent on the wavefront of the composite network for their

A Journey Through Computatuion 2/21/25, 11:39 AM

41 Copyright © 2024 by Karl Fant

input presentation. While each component network retains the same singularity of behavior in its
own local context that it exhibited as a stand alone network each component singularity of
behavior is now one singularity among many in the composite network as a whole. As an
interaction wavefront flows through a composite network each component network and each
component primitive behavior appreciates its own output transition to completeness marking its
own local instance of interaction. Even though these instances of component interaction are all
subordinate to and dependent on the flow of the composite network wavefront and are
determined by dependency relations that converge to transition to completeness of the output
locality of the composite network there is no singularly coherent relation among the collective
component transition behaviors. The flowing wavefront that produces a singular transition event
for the network as a whole (section 3.4.6.3) produces an incoherent chaos of local component
events in relation to the network as a whole.

As a constant network grows larger the extent of this internal incoherence increases within
the network while the transition to completeness of composite network’s output locality remains
the only singularly appreciable behavior in relation to the network as a whole marking one
instance of interaction (sections 3.4.5.5 and 3.4.6.4).

3.4.10. 5 bit adder constant network
The 5bit addition example illustrates a more complex constant network, that fulfills the

completeness of input criterion and which can be indiscriminately referenced and copied.
3.4.10.1. component

The first step is to express the full adder and compose a 5 bit number locality then to
compose the 5 bit adder in terms of the full adder and 5 bit number localities.

The fulladd expression specifies the fulladd dependency network in the left of Figure 3.19.

(fulladd(A/{1 0}/ B/{1 0}/ Cin/{1 0}/ => sum/{1 0}/ Cout/{1 0}/)
sum/{1<={[A/1 B/0 Cin/0] [A/0 B/1 Cin/0] [A/0 B/0 Cin/1] [A/1 B/1 Cin/1]}
 0<={[A/0 B/0 Cin/0] [A/1 B/1 Cin/0] [A/0 B/1 Cin/1] [A/1 B/0 Cin/1]} }
Cout/{1<={[A/1 B/1 Cin/0] [A/0 B/1 Cin/1] [A/1 B/0 Cin/1] [A/1 B/1 Cin/1]}
 0<={[A/0 B/0 Cin/0] [A/1 B/0 Cin/0] [A/0 B/1 Cin/0] [A/0 B/0 Cin/1]} })

bound reference name

dependency relations

binding portal localities

sum is dependent on the dependency of its components, [1 0] on input localities A, B and
Cin distributed by the binding portal. Cout is dependent on the dependency of its components,
[1 0] on input localities A, B and Cin distributed by the binding portal.
3.4.10.2. Composition

With fulladd an expression is encountered with two output assertions. This poses a difficulty
with representing dependency with portal nesting as the portal nesting relation is one to one. Two
versions of fulladd can be expressed, one with a sum output and one with a Cout output each of
which can then be nested. Another approach with full portal reference is to designate the
dependency of one output as nested with # in its syntactic position and to designate the
dependency of the other output by name correspondence with a name in its syntactic position.

In the references to fulladd in the 5bitadder expression the dependency relation of the
assertion locality sum is designated to be nested, #, and the dependency relation of the assertion
locality Cout is represented with name correspondence, carry/x.

A Journey Through Computatuion 2/21/25, 11:39 AM

42 Copyright © 2024 by Karl Fant

The 5bitadder expressed in terms of fulladd and the structure of the 5 bit number locality.

(5bitadder(A/[4-0] B/[4-0] Cin => sum/[4-0] Cout)
(carry/[5-1]/{1 0}/)
sum/0<=fulladd(A/0 B/0 Cin => # carry/1)
sum/4-1<=fulladd(A/4-1 B/4-1 carry/4-1 => # carry/5-2)
Cout<=carry/5)

bound reference name

dependency relations

binding portal localities

internal localities

3.4.10.3. Inheritance
The locality expressions A/[4-0], B/[4-0], sum[4-0] and Cout, because they do not include

the terminal dangling / or /{D N}, are not complete. A/[4-0] just specifies “all of” five things
named 4, 3, 2, 1, and 0. What the things are will be inherited by reference.

Each referential A/4-1 expands to A/4 A/3 A/2 A/1 with each A/x referencing an instance
of fulladd. Each instance of A/x corresponds to fulladd/A and inherits from fulladd/A
completing the referencing locality. The locality expression A[4-0] becomes A[4-0]/{1 0}/
completely representing a 5 bit binary number. The inheritance could have been A[4-0]/{2 1 0}/
representing a five trit number or A[4-0]/{3-0}/ representing a five quat number.

The inheritance expansion from fulladd

(5bitadder(A/[4-0]/{1 0}/ B/[4-0]/{1 0}/ Cin/{1 0}/ => sum/[4-0]/{1 0}/ Cout/{1 0}/)
(carry/[5-1]/{1 0}/)
sum/0<=fulladd(A/0 B/0 Cin => # carry/1)
sum/4-1<=fulladd(A/4-1 B/4-1 carry/4-1 => # carry/5-2)
Cout<=carry/5)

bound reference name

dependency relations

binding portal localities

internal localities

sum/[4-0] expands to sum/4, sum/3, sum/2, sum/1 each referencing an instance o fulladd.
The above expression expands to:

(5bitadder(A/[4-0]/{1 0}/ B/[4-0]/{1 0}/ Cin/{1 0}/ =>
sum/[4-0]/{1 0}/ Cout/{1 0}/)

(carry/[5-1]/{1 0}/)
[sum/0<=fulladd(A/0 B/0 Cin => # carry/1)
sum/1<=fulladd(A/1 B/1 carry/1 => # carry/2)
sum/2<=fulladd(A/2 B/2 carry/2 => # carry/3)
sum/3<=fulladd(A/3 B/3 carry/3 => # carry/4)
sum/4<=fulladd(A/4 B/4 carry/4 => # carry/5)]
Cout<=carry/5)

bound reference name

dependency relations

binding portal localities

internal localities

3.4.10.4. Adder Network
The above expressions map to the 5bitadder constant network in the right of Figure 3.19.

The 5 bit adder constant network is composed in terms of fulladd component constant networks.
The 5 bit number localities are composed in terms of 1 bit digit localities.

A Journey Through Computatuion 2/21/25, 11:39 AM

43 Copyright © 2024 by Karl Fant

A/1
A/0

B/1
B/0

111

011

101

001

110

010

100

000

ABC

sum/1

sum/0

Cout/1

Cout/0

Cin/1
Cin/0

fulladd

fulladd

fulladd

fulladd

fulladd

fulladdA/[4-0]

B/[4-0]

sum/4

sum/3

sum/2

sum/1

sum/0

A/4
B/4

A/3
B/3

A/2
B/2

A/1
B/1

A/0
B/0

carry/1

carry/2

carry/3

carry/4

carry/5
Cout

Cin
5bitadder

Figure 3.19. Fulladd network and 5 bit adder network.

3.4.10.5. Constancy and completeness
Each fulladd is constant and fullfils the completeness criterion. Each successive fulladd in

the carry chain of 5bitadder requires the predecessor carry to meet completeness of input to
transition its output. If any part of A or B is not complete then at least one fulladd will not
achieve input completeness, not transition its sum and at least one part of the 5bitadder sum
will not transition to completeness. If the 5bitadder sum transitions to completeness it implies
that A and B and Cin have transitioned to completeness fulfilling the completeness criterion for
the network as a whole.

The expression of a 5 bit multiplier constant network is presented in Appendix F.

3.5. INTERLUDE: The constant network
A constant network is a network of dependency relations among primitive behaviors and

localities of differentness with the primitive behaviors linearly and progressively associated
output to input i.e. no circular or feedback associations (section 3.4.2). It is constant in that it
always asserts the same completeness of output differentness for the same presented
completeness of input differentness (section 3.4). It fulfills the completeness of input criterion in
that the transition of its output to completeness implies that the presented input has transitioned
to completeness, that the interaction is complete and that the output is the correct result for the
presented input (section 3.4.7.2). It is indiscriminately composeable in that it, can be referenced
from and copied to anywhere and anywhen, in particular to compose bigger constant networks
(section 3.4.9).

A constant network manifests interaction as wavefronts of differentness transition flowing
through the network coordinated in terms of completeness relations (section 3.4.6). A wavefront
is initiated by the transition of input presented from an external environment to an exposed
binding portal which bounds the network with input and output ports (section 3.4.5). The
constant network is subordinate to and is controlled by the input presented from the external
environment which provides its source of liveness (with presentation), determines its temporal

A Journey Through Computatuion 2/21/25, 11:39 AM

44 Copyright © 2024 by Karl Fant

instance of interaction (with the monotonic transitions between D completeness and completely
N) and provides its source of variability of behavior (The constant network itself is constant. Its
behavior varies only with the differentness of its presented input).

By the end of this chapter the network will be in complete control of itself in relation to a
passively indifferent environment.

3.5.1. Constant network space
The constant network bounded by its exposed binding portal is the interaction space.

3.5.2. Constant network time
A constant network can perform only one interaction at a time. The transition of the its output

locality to D completeness implying that the presented input is complete and that the output is
the correct result of the presented input is the only singularly appreciable network behavior
bounded by the exposed binding portal and framed by transition to completely N wavefronts
coherently marking one instance of interaction and one instance of interaction time for the
network as a whole (sections 3.4.6.5 and 3.4.6.3).
3.5.2.1. Extending association differentness through time

Even if successive interactions are identical in all aspects of transition behavior the
interactions are different by virtue of differentness of instances of interaction time. Each instance
of interaction, each reuse of a constant network, extends its expression of differentness of
interaction through time. This is temporal differentiation (Chapter 4).
3.5.2.2. Ephemeral time

However, these instances of interaction are ephemeral (section 3.4.6.5), disappearing from
the network, never associating and never interacting in the context of the network which cannot
account this extension of expression of differentness of interaction.
3.5.2.3. Interaction incoherence

Constant network individual inputs can transition to completeness in varying orders
including all at once. Wavefront transitions flowing through the network concurrency relations
with varying delays can transition in varying orders including all at once (section 3.4.6.4 and
3.4.9.8). There is no singular referent of time or space that coherently relates them. Wavefront
flow through the network is coordinated in terms of dependency completeness relations not in
terms of temporal relations or spatial relations.
3.5.2.4. Wholeness

The exposed binding portal bounds the network providing its liveness and time and realizing
the network’s reuse determines the wholeness of the network, its instances of interaction and of

The responsible environment
For a constant network to behave the environment is still required to monotonically

transition inputs to the network with an appropriate delay between transition to D
completeness and transition to completely N to allow each consequent transition wavefront to
flow completely through the network. This responsibility is now relegated to the input
presentation of the exposed binding portal of the constant network as a whole. If fulfilled
for the constant network as a whole then the monotonic transitioning and delay requirements
for the primitive interaction behaviors and component constant networks within the composite
constant network are also fulfilled.

A Journey Through Computatuion 2/21/25, 11:39 AM

45 Copyright © 2024 by Karl Fant

interaction time (sections 3.4.5.5 and 3.4.9.8). This wholeness of constant network is not
wholeness of expression which leaks through the binding portal into the external environment
not accounted by the constant network.

3.5.3. Nothing new
A constant network is a linear progression of specifically interacting differentnesses

represented as a directed network of dependency relations among the primitive behaviors defined
in section 3.2. Nothing new has been introduced either abstractly or substantially.

3.5.4. The transcendental view
Because a constant network always asserts the same result differentness for the same

presented input differentness, a constant network, however complex, can be abstractly
characterized as a single step mapping transcending and ignoring its internal structure and
behavior which includes intrinsic concurrent dependency relations. This equates the network
with a single step, single place primitive behavior. This reduction of complexity to primitivity
rather overlooks the emergence of complexity from primitivity.

3.6. QUANDARY 5: The environment
On the one hand the external environment can be incorporable into a constant network. On

the other hand the external environment is never fully incorporated. What and where is this
inscrutable external environment that is in complete control of the constant network, residing
always on the other side of its exposed binding portal, undoubtably there, but always receding
just beyond grasp like the never findable end of the rainbow?

This binding portal exposed to an uncharacterized environment is intrinsic to constant
networks. If a constant network were not completely dependent on its presented input it would
not be indiscriminately referenceable and copyable. But the quandary remains. Key aspects of a
constant network, its variability of behavior, its time and its very liveness lie beyond its
expressivity.

3.7. The oscillation network: self regulation
A constant network fulfilling the completeness of input criterion can use the completeness

transitioning of its output to self regulate wavefront flow into the network. In Figure 3.20 the
completeness of the output transition (in this case the transition of “one of” C/0 or C/1 to D or
the transition of C to “all of” N) is appreciated by a “one of” behavior which reduces the
completeness of output to a single place of association C.comp with condition D representing D
completeness and condition N representing completely N. C.comp is the singular appreciation
of the singularly appreciable completeness of the output locality. This singular appreciation of
completeness of interaction corresponds to the Z condition of the Roman numeral example of
Chapter 2 (section 2.4.4).

A Journey Through Computatuion 2/21/25, 11:39 AM

46 Copyright © 2024 by Karl Fant

interaction flow
closure flow

initialization signal

C/1

C/0

Ain/1

Ain/0

Bin/1

Bin/0

C.compconversion
n

init

A/1

A/0

B/1

B/0

C.close

completeness

Figure 3.20. Self regulating oscillation network.

The dependency relations for appreciating and reducing the completeness of a locality to a
single place of association are contained in the expression of each locality (section 3.9.2).

3.7.1. Regulating network input
The appreciation of output completeness C.comp is converted ~C.comp=>C.close and

closes with the input through “all of” behaviors to allow the next transition wavefront into the
network. With the network empty and its output completely N C.comp will be N and
~C.comp=>C.close will be D which will enable a wavefront of transition to D completeness to
flow through the rank of “all of” behaviors into the constant network. C.close will remain D
with the “all of” behaviors maintaining the D completeness wavefront until the wavefront has
propagated all the way through the network and transitioned the output to D completeness. If Ain
and Bin transition to completely N they will wait for C.comp to transition to N.

When the output transitions to D completeness C.close transitions to D and
~C.comp=>C.close transitions to N allowing a transition to completely N wavefront into the
constant network. If the input is not completely N the rank of “all of” behaviors will wait for the
input to transition to completely N. C.close will remain N with the “all of” behaviors
maintaining the N wavefront until the wavefront has propagated all the way through the network
and transitioned the output to completely N. If Ain and Bin transition to D completeness they
will wait for C.close to transition to D.

When the output transitions to N completeness C.comp transitions to N and
~C.comp=>C.close transitions to D allowing a transition to D completeness wavefront into the
constant network. If the input is not D completeness the rank of “all of” behaviors will wait for
the input to transition to D completeness. When the transition to D completeness wavefront
arrives it passes through the “all of” behaviors into the constant network. C.close will remain D
with the “all of” behaviors maintaining the D completeness wavefront until the wavefront has
propagated all the way through the network and transitioned the output to D completeness. If Ain
and Bin transition to completely N they will wait for C.close to transition to N.

When the output transitions to N completeness C.comp transitions to N and
~C.comp=>C.close transitions to D allowing a transition to D completeness wavefront into the
constant network.

And so on.
The next input transition is not allowed into the network until the current transition wavefront

has completely propagated through the network and transitioned the output. The closure,
recognizing the singularly appreciable event of the output of the constant network transitioning

A Journey Through Computatuion 2/21/25, 11:39 AM

47 Copyright © 2024 by Karl Fant

to completeness manages the monotonic transitioning of input presentations regulating the flow
of wavefronts into the network.

3.7.2. Expressing the oscillation network
The closed network with a single converted differentness appreciating the monotonic

transitions or oscillations between two disjoint completeness representations is similar to a
spontaneously alive binary ring oscillator circuit with a single inversion. So the network is called
an oscillation network.

The black paths in Figure 3.20 are interaction wavefront flow paths. The orange paths are
closure flow paths. The initializing converter allows the network to be initialized to all N, empty
of interaction differentness ready for the first transition to D completeness (appendix section
D.1.1.)

The network expression with closure introduces two syntax elements. The tilde ~ represents
conversion of D to N or of N to D (Section 3.2.1). The conversion occurs only in closure, never
in an interaction wavefront. The ? before a locality name indicates the completeness reduction of
the referenced locality to a single place of association of the same name with a .comp suffix,
name.comp.

Expression of the oscillation network

(net (Ain/{1 0}/ Bin/{1 0}/ => C/{1 0}/)
 (A/{1 0}/ B/{1 0}/ C.comp/)

A<=[Ain ~C.comp]
B<=[Bin ~C.comp]
C.comp<=?C/{ 1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

binding portal localitiesbound reference name

dependency relations

internal localities

C.comp is dependent on the completeness of C the completeness of which is dependent on
the components of A which are dependent on Ain and conversion of C.comp and on the
components of B which are dependent on Bin and conversion of C.comp.

3.8. INTERLUDE: Marking time with the oscillation network
Closing a constant network with the converted output locality completeness enabling the

network input creates a spontaneously alive, self regulating network continually striving to
transition between D completeness and completely N performing the interaction of its
encompassed network on successive presentations of completeness transition with its own
appropriate delay.

The encompassed interaction network provides interaction behavior. The input “all of”
enable rank provides memory behavior. The completeness of input criterion and the
completeness closure provide coordination behavior. These are the same properties exhibited by
the primitive behaviors in section 3.3. At this point the oscillation network can be considered an
abstract primitivity. All networks from now on will be composed of oscillation networks.

The encompassed interaction network must be constant. If a wavefront in the network flows
anywhere other than to contribute to the output of the network the completeness of the output of
the network will not imply the status of the non contributing wavefront.

A Journey Through Computatuion 2/21/25, 11:39 AM

48 Copyright © 2024 by Karl Fant

3.8.1. Oscillation network space and time
The constant network encompassed by the closure is the interaction space. The transitions of

the output completeness between D completeness and completely N are the appreciable
boundaries of instances of interaction and differentness of interaction time in relation to the
encompassed constant network. The oscillation network appreciating these boundaries serves as
an escapement mechanism establishing a nonuniform metric of interaction time for its
encompassed constant network in relation to its flowing wavefronts of transition. The oscillation
network is now in control of its own interaction time and there is no longer any appeal to a
conventional metric of time. Network interaction time becomes a metric of time in itself
unrelated to any conventional metric of time.

From this point on networks will be in control of their own time.

3.8.2. Nothing new
An oscillation network is an emergent behavior expressed solely in terms of dependently

associating the defined primitive behaviors (section 3.2). Nothing new has been introduced either
abstractly or substantially.

3.8.3. No external metrics
There is no coherent reference frame or external metric of space or of time relative to an

oscillation network and trying to impose an external metric onto the oscillation network
contributes nothing to either the understanding of or the effective realization of the oscillation
network.

3.8.4. The transcendental view
The closure network can be removed and ignored and the constant network within the closure

network viewed as a single step mapping behavior if one wishes.

3.9. The pipeline network: composing self regulation
A pipeline network is a structure of linked oscillation networks coordinating their wavefront

flow with closure relations. Placing the output completeness determination of oscillation network
A after the input enable closure of oscillation network B links the two oscillation networks
coordinating wavefront flow from oscillation network A to oscillation network B.

The responsible environment
An oscillation network self regulates the monotonic transitioning delay of its input

between D completeness and completely N. Prior to this point the environment
determined the delay between presentation transitions in terms of a conventional time
metric. The environment still has an imposed requirement for monotonically transitioning
presented input with an appropriate delay between transitions but now the oscillation
network itself determines the appropriate delay between transitions of input
presentation. The responsibility of the environment is now to honor the closure by next
transitioning the input only after each transition wavefront is accepted with closure by the
network.

The environment is still a source of variability and monotonic transitioning but it is
no longer in complete control. The network itself is now in control of its own time. There
is no longer any appeal to a conventional metric of time.

A Journey Through Computatuion 2/21/25, 11:39 AM

49 Copyright © 2024 by Karl Fant

Figure 3.21 shows a pink an orange and a blue oscillation network. They are linked by
placing the completeness of the pink network after the enable of the orange network and by
placing the completeness of the orange network after the enable of the blue network forming a
pipeline of linked oscillation networks.

n

inter
action

n
n n

n

inter
action

inter
action

inter
action

n

inter
action

inter
action

n

Figure 3.21. linking oscillation networks.

The wavefront accepted by the pink network from a previous network flows to the enable of
the pink network and is stably maintained until accepted by the orange network however long
this might take. When accepted by the orange network the pink network can determine the
completeness of its flow and can accept the next wavefront transition into its network.

The wavefront accepted by the orange network from the pink network flows to the enable of
the blue network and is stably maintained by the orange network until accepted by the blue
network however long this might take. When accepted by the blue network the orange network
can determine the completeness of its flow and can accept the next wavefront transition into its
network.

The wavefront accepted by the blue network from the orange network flows to the enable of
a next network and is stably maintained by the blue network until accepted by the next network
however long this might take. When accepted by the next network the blue network can
determine the completeness of its flow and can accept the next wavefront transition from the
orange network into its network.

And so on.

3.9.1. Pipeline wavefront flow
Each oscillation network of a pipeline network is individually and spontaneously alive

continually striving to transition between D completeness and completely N. The oscillation
networks mutually coordinate each other’s striving through the closure links. At each closure link
an early interaction wavefront transition will wait indefinitely for a corresponding closure enable
transition and an early closure enable transition will wait indefinitely for a corresponding
interaction wavefront transition. As oscillation networks individually oscillate, alternating
wavefronts of transition to D completeness and completely N spontaneously flow, fully
coordinated, from oscillation network to oscillation network through the pipeline network with
transition to D wavefronts interacting as they flow through the constant networks encompassed
within the oscillation networks.

3.9.2. The closure link
Placing the completeness for a locality of a delivering oscillation network after the enable of

the same locality of the receiving oscillation network forms a closure link. A closure link for a
locality is determined by the expression of the locality which specifies the determination of its

A Journey Through Computatuion 2/21/25, 11:39 AM

50 Copyright © 2024 by Karl Fant

transition to D completeness and its enable completeness. Determining the transition to
completely N is universally the same for all localities. Figure 3.22 shows closure links for
several locality structures with their completeness determination networks after their locality
enable network. A link is typically on the output of a network and is defined by the expression of
the output locality. In Figure 3.25 through Figure 3.30 each locality declaration is shown above
the corresponding completeness determination network.

one bit two bit five bit quaternary

nB.close

init

1

0 B

B/{1 0}/

B.comp
A.comp

nB.close

init

1

0

1

0

B/0

B/1

B/[1 0]/{1 0}/

B.comp
A.comp

nB.close

1

0

1

0

1

0

1

0

1

0

B/0

B/1

B/2

B/3

B/4

B/[4-0]/{1 0}/

init

B.comp
A.comp

nB.close

init

1

0

B

B/{3-0}/

2

B.comp
A.comp

3

Figure 3.22. Completeness of localities with their structure expressions.

See the localities of net Figure 3.24 for one bit locality links. See qtob/B Figure 3.25 for a
two bit locality link. See 5bitadd section 3.4.10 for five bit locality links. See qtob/A Figure
3.25 for a quaternary locality link.

The closure link is similar to the notion of asynchronous handshakes.

“in its most general form, asynchronous design removes the global clock in favor of
distributed local handshaking to control data transfer and changes of state.” 6

This is a view that defers to clocked Boolean design as the fundamental referent with
asynchronous design as a subordinate derivative variation. The present narrative takes the
opposite view considering depemdently flowing asynchronous behavior as fundamental and
synchronous behavior as derivative (sections 1.1.1, 1.8, 3.4.6 and 5.7.5). Closure represents a
more integrated wholeness than does the notion of handshake.

3.9.3. The closure protocol

• A locality completeness closes with (enables monotonic transition of) all localities on which
its completeness is dependent.

• A locality is closed by (its monotonic transition enabled) all the localities which depend on it
for their own completeness transition.

A Journey Through Computatuion 2/21/25, 11:39 AM

51 Copyright © 2024 by Karl Fant

a constant network typically has two or more input localities and one output locality which is
dependent on all of the input localities. So the completeness of the output closes with all the
inputs as shown in Figure 3.20 forming an oscillation network. The inputs, however, are two
different localities from two different networks and must be viewed as closed individually. The
oscillation network on the left of Figure 3.23 is redrawn to show the localities A and B closed
individually.

interaction flow
closure flow

initialization signal

C/1

C/0

Ain/1

Ain/0

Bin/1

Bin/0
AB.compconversion

n
init

A/1

A/0

B/1

B/0

B.close

completeness

a.close

C/1

C/0

Ain/1

Ain/0

Bin/1

Bin/0
AB.oompconversion

init

A/1

A/0

B/1

B/0

B.close

completeness

comp

comp

A.close

nC.close

n

c.comp

link

link

link

Figure 3.23. Localities A and B are shown as individually closed localities.

Each locality A and B will determine its own completeness and close with the localities on
which it is dependent as shown on the right of Figure 3.23. Locality C contributes to the
completeness of some locality and will be closed with and enabled by that locality as shown on
the right of Figure 3.23. Links appear on the input and output of the oscillation network.

Figure 3.24 illustrates the network at the right of Figure 3.23 in the context of its constant
network boundaries shown with dashed lines. The links for the two inputs are now output links
in separate networks. Links will be generally associated with network outputs. Closure relations
flow beyond the oscillation network expression and necessarily pass through its binding portal
closing with links in other networks.

-.close

-.close C/1

C/0

X/1

X/0

-/1

-/0

C/1

C/0

A/1

A/0

B/1

B/0

link

link

link
n

init init

AB.comp

n

X.comp

Y.comp

source of B

source of A

AB.comp

AB.comp

n

net net

C.comp

Y/1

Y/0

-/1

-/0

-/1

-/0

-.comp

destination
of C

computation flow
closure flow

initialization signal
network boundary

X.close

Y.close

Figure 3.24. Constant network encompassed with explicit closure links.

3.9.4. Counter flowing networks
Figure 3.24 and Figure 3.21 provide the first glimpses of the counter flowing networks of a

pipeline network. A pipeline network composed of oscillation networks forms a structure of

A Journey Through Computatuion 2/21/25, 11:39 AM

52 Copyright © 2024 by Karl Fant

interpenetrating counter-flowing networks. Interaction transition wavefronts flow through the
constant networks in the direction of interaction. Closure transitions flow through the closure
network counter to the direction of interaction flow. The counter flowing networks intersect
through localities with links that coordinate the counter directional flows with common
singularly appreciable completeness relations (section 3.9.7).
3.9.4.1. Bubble flow

The closure network transition flow from the output of the pipeline to the pipeline input
through the links is referred to as bubble flow. The wavefronts spontaneously flow into bubbles
as the bubbles flow in the reverse direction around the wavefronts (Appendix D).

3.9.5. Expressing closure flow and composition
The expression of the network named net in Figure 3.24 begins with the expression of the

enclosed constant network from Figure 3.11.
The expression of the constant network encompassed by the oscillation network.

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)
C/{ 1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

binding portal localitiesbound reference name

dependency relations

A link is then added to the output locality C. The output C is enabled by the conversion of
C.comp received from outside the network. AB.close is generated inside the network from the
completeness of C and sent through the binding portal to close with the sources of A and B.

The binding portal must now include the flow of both the constant network and the closure
network.

Closure link integrated into the expression of net.
(net (A/{1 0}/,AB.comp/ B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
 AB.comp<=?C/[{ 1<={[A/0 B/1] [A/1 B/0]}

 0<={[A/0 B/0] [A/1 B/1]} } ~C.comp])

AB.close is dependent on the completeness reduction ? of C the completeness of which is
dependent on the completenesses of A and B and the conversion ~ of C.comp.

Every interaction locality of the binding portal is paired by a comma with a corresponding
closure flowing in the opposite direction: A/{1 0}/,AB.comp and B/{1 0}/,AB.comp and C/{1
0}/,C.comp. Again blue is input and red is output. The interaction and closure flows through a
portal are dependent but are not simultaneous. For instance, in the binding portal A is paired with
AB.comp. In Figure 3.24 an AB.comp transition will flow out of the portal and later enable the
transition of X which will then flow into the portal as a transition of A.
3.9.5.1. Half oscillations

There is one complete oscillation network in Figure 3.24 but the expression of the oscillation
network occurs over three component constant network expressions none of which contains a
complete oscillation network. Each component constant network with a link on its output locality
forms a pipeline component network expressing two half oscillations, an input/completeness half
oscillation closing with the inputs to the network and an output/enable half oscillation closed by
the output of the network.

A Journey Through Computatuion 2/21/25, 11:39 AM

53 Copyright © 2024 by Karl Fant

3.9.6. Composing half oscillations
Pipeline composition is illustrated by adding links to the output locality of the constant

networks qtob and btoq of section 3.4.9 forming the pipeline component networks of Figure
3.25.

qtob

link

B/1/1

B/1/0

B/0/1

B/0/0

link

init

B/[1 0]/{1 0}/

N B.comp

A/3

A/2

A/1

A/0

A.comp

completeness
half oscillation

enable
half oscillation

qtob

link
A/1/1

A/1/0

A/0/1

A/0/0

B/3

B/2

B/1

B/0

link

B/{3 2 1 0}/

init

A.comp B.compN

completeness
half oscillation

enable
half oscillation

btoq

btoq

Figure 3.25. Primitive pipeline component networks bounded by half oscillations.

Expression for pipeline component btoq.
binding portal localitiesbound reference name

dependency relations

(btoq(A/[1 0]/{1 0}/,A.comp/ => B/{3 2 1 0}/,B.comp/)
A.comp<=?B/[{3<=[A/1/1 A/0/1]
 2<=[A/1/1 A/0/0]

 1<=[A/1/0 A/0/1]
 0<=[A/1/0 A/0/0]} ~B.comp])

A.comp is dependent on the completeness reduction ? of B the completeness of which is
determined by the dependency relations of its components, {3 2 1 0} on input locality A
components and ~B.comp. In the binding portal input/presentation locality A is paired with
closure A.comp and output/assertion locality B is paired with closure B.comp.

Expression for pipeline component qtob.

(qtob(A/{3 2 1 0}/,A.comp => B/[1 0]/{1 0}/,B.comp)
A.comp<=?B/[[1{1<={A/3 A/2}
 0<={A/1 A/0}}
 0{1<={A/3 A/1}
 0<={A/2 A /0}}] ~B.comp])

binding portal localitiesbound reference name

dependency relations

A.comp is dependent on the completeness reduction ? of B the completeness of which is
determined by the dependency relations of its components, [1 0]/{1 0} on input localities A
components and ~ B.comp. In the binding portal input/presentation locality A is paired with
closure A.comp and output/assertion locality B is paired with closure B.comp.

A Journey Through Computatuion 2/21/25, 11:39 AM

54 Copyright © 2024 by Karl Fant

3.9.6.1. Associating the half oscillations
The example pipeline network is composed by associating the output/enable half oscillation

locality btoq/B to the input/completeness half oscillation locality qtob/A forming a pipeline
network containing one oscillation network and bounded by half oscillations. The constant
network is composed as before by associating a binding portal output to a binding portal input
(Figure 3.17) but now the composition involves associating the paired closures which
simultaneously composes the two counter flowing networks

link
X/1/1

X/1/0

X/0/1

X/1/0

btoq qtob

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

link

link

/{3 2 1 0}/

init init

Z/[1 0]/{1 0}/

X.comp N
Z.comp

N

pipe

_/3

_/2

_/1

_/0

Figure 3.26. linked pipeline segment networks forming a pipeline network.

3.9.6.2. Locality inheritance
The expression of composition, Figure 3.26, is simplified by expressing the interaction flow

dependency relations in terms of whole locality references and nameless nesting relations.

The dependency expression for pipe.

(pipe(X => Z)
Z<=qtob(btoq(X)))

bound reference name

dependency relations

binding portal localities

and inheriting closure relations as well as locality structure from the referenced component
network expressions (section 3.4.9.3).

Z inherits locality structure and closure relation from qtob/B.

(qtob(A/{3 2 1 0}/,A.comp/ => B/[1 0]/{1 0}/,B.comp/)

Z<=qtob() Z/[1 0]/{1 0}/,Z.comp/
reference referential inheritance

A Journey Through Computatuion 2/21/25, 11:39 AM

55 Copyright © 2024 by Karl Fant

X inherits locality structure and closure relation from btoq/A.

(btoq(A/[1 0]/{1 0}/,A.comp/ => B/{3 2 1 0}/,B.comp/)

(btoq(X) X/[1 0]/{1 0}/,X.comp/
reference referential inheritance

The inheritance expanded expression for pipe network of Figure 3.26.

(pipe(X/[1 0]/{1 0}/,X.comp/ => Z/[1 0]/{1 0}/,Z.comp/)
Z,Z.comp<=qtob(btoq(X,X.comp)))

bound reference name

dependency relations

binding portal localities

pipe/Z,Z.comp is dependent on qtob/B,B.close which is dependent through btoq on pipe/
X,X.comp.
3.9.6.3. Composing bigger pipelines

Pipeline networks bounded by half oscillations are composed by associating half oscillation
binding portal localities to form larger pipeline networks. The expression below connects two
pipe networks to form bigpipe network of Figure 3.27.

The dependency expression for bigpipe network of Figure 3.27

(bigpipe(M => N)
N<=(pipe(pipe(M)))

bound reference name

dependency relations

binding portal localities

N is dependent on the outer pipe which is dependent on the inner pipe which is dependent on
M. N inherits its locality structure and closure flow from pipe/Z which inherited its structure and
closure flow from qtob/B. M inherits its locality structure and closure flow from pipe/X which
inherited its structure and closure flow from btoq/A.

The inheritance expanded expression for bigpipe network of Figure 3.27.

(bigpipe(M/[1 0]/{1 0}/,M.comp/ => N/[1 0]/{1 0}/,N.comp/)
N,N.comp<=(pipe(pipe(M,M.comp)))

bound reference name

dependency relations

binding portal localities

A Journey Through Computatuion 2/21/25, 11:39 AM

56 Copyright © 2024 by Karl Fant

link
M/1/1

M/1/0

M/0/1

M/1/0

btoq qtob

link

link

link

/{3 2 1 0}/

init

/[1 0]/{1 0}/

M.comp N

link

btoq qtob

link

N/1/1

N/1/0

N/0/1

N/0/0

link

N

link

/{3 2 1 0}/

init init

N/[1 0]/{1 0}/

N
N.comp

pipe pipe

bigpipe

_/3

_/2

_/1

_/0

_/3

_/2

_/1

_/0

_/1/1

_/1/0

_/0/1

_/0/0

NN

Figure 3.27. Longer pipeline composed of shorter pipelines.

The pipeline bigpipe contains three complete oscillation networks and is bounded by half
oscillations ready for further composition.
3.9.6.4. Simultaneously flowing instances of interaction

Each transition to D completeness presented to an input half oscillation boundary of a
pipeline network initiates a wavefront of transition to D completeness flowing through the
pipeline network. After the D wavefront propagates through one or more oscillation networks the
input completeness half oscillation boundary can accept a presentation transition to completely
N. After the transition to completely N wavefront propagates through one or more oscillation
networks the input completeness half oscillation boundary can accept a next presentation of
transition to D completeness initiating a next transition to D completeness wavefront into the
pipeline network. A pipeline network maintains the independence and integrity of multiple
transition to D completeness wavefronts separated by transition to completely N wavefronts
simultaneously flowing through different stages of a long pipeline network each representing an
isolated and discrete differentness of instance of interaction behavior and instance of interaction
time.

The wavefronts remain isolated because a completely N wavefront can only flow into a D
bubble. It cannot flow into a D completeness wavefront. Similarly a D completeness wavefront
can only flow into a N bubble. It cannot flow into a completely N wavefront. The wavefronts can
never overtake each other in a pipeline network (Appendix D).
3.9.6.5. Pipeline network time

Each successive transition to D completeness wavefront in a pipeline network is a future in
relation to its predecessor transition to D completeness wavefronts and a past in relation to its
successor transition to D completeness wavefronts.
3.9.6.6. The completeness of input criterion

The first transition to D completeness wavefront to flow into a pipeline network produces the
first transition to D completeness wavefront flowing out of the pipeline network the
completeness of which which implies the completeness of the first input presentation. The
second input transition to D completeness wavefront produces the second output transition to D
completeness wavefront which implies the completeness of the second input presentation and so
on. If each oscillation network fulfills the completeness of input criterion then the pipeline
network as a whole fulfills the completeness of input criterion.

A Journey Through Computatuion 2/21/25, 11:39 AM

57 Copyright © 2024 by Karl Fant

3.9.7. Variations of closure structure
The examples in Figure 3.28 illustrates the possible web granularities of counter flowing

closure structures for the constant network of Figure 3.18.

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

a. Raw interaction network b. Coarsest granularity of closure

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

n

Y.comp

W.comp

X.comp

Z.comp

C.comp

A

B

C

C

c. Finer granularity of closure d. Integrated closure

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

n

n

Y.comp

W.comp

X.comp

Z.comp

C.comp

n

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

n

n

n

Y.comp

W.comp

X.comp

Z.comp

C.comp

A

B

C

C

A

B

C

C

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

n

n

n

n

n

e. Finest granularity of closure

n

Y.comp

W.comp

X.comp

Z.comp

C.comp

A

B

C

C

Figure 3.28. The varieties of closure structure for a given constant network.

A Journey Through Computatuion 2/21/25, 11:39 AM

58 Copyright © 2024 by Karl Fant

3.9.7.1. Figure 3.28a network expression: raw constant network
The raw constant network as described in section 3.4.9.4 can be expressed as a composition

of component networks:

(net(A/{1 0}/ B/{1 0}/ => C/{1 0}/)
C/{1<={{[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} })

The bignet network of Figure 3.28a is expressed as references to net.
The dependency expression

(bigneta(W X Y Z => C)
C<=net(net(W X) net(Y Z)))

The inheritance expanded network expression.

(bigneta(W/{1 0}/ X/{1 0}/ Y/{1 0}/ Z/{1 0}/ => C/{1 0}/)
C<=net(net(W X) net(Y Z)))

Or the network can be expressed entirely in terms of relations among primitive behaviors
with no references and no inheritance. Locality structures have to be explicitly expressed.

 (bigneta(W/{1 0}/ X/{1 0}/ Y/{1 0}/ Z/{1 0}/ => C/{1 0}/)
C/{1<={ [{[W/0 X/1] [W/1 X/0]} {[Y/0 Z/0] [Y/1 Z/1]}]

 [{[W/0 X/0] [W/1 X/1]} {[Y/0 Z/1] [Y/1 Z/0]}] }
 0<={ [{[W/0 X/1] [W/1 X/0]} {[Y/0 Z/1] [Y/1 Z/0]}]

 [{[W/0 X/0] [W/1 X/1]} {[Y/0 Z/0] [Y/1 Z/1]}] } })

bigneta is a constant network with no closure.
3.9.7.2. Figure 3.28b network expression: coarsest granularity of closure

There are two approaches to expressing bignetb of Figure 3.28b.
1. The link can be syntactically incorporated into the primitive behavior expression of

bigneta. There are no references to already expressed networks and hence no inheritance so
bignetb has to explicitly express the closure in detail including the structure of the binding
portal.

(bignetb(W/{1 0}/,WXYZ.comp/ X/{1 0}/,WXYZ.comp/ Y/{1 0}/,WXYZ.comp/ Z/{1
0}/,WXYZ.comp/ => C/{1 0}/,C.comp/)
WXYZ.comp<=?C/[{1<={ [{[W/0 X/1] [W/1 X/0]} {[Y/0 Z/0] [Y/1 Z/1]}]

 [{[W/0 X/0] [W/1 X/1]} {[Y/0 Z/1] [Y/1 Z/0]}] }
 0<={ [{[W/0 X/1] [W/1 X/0]} {[Y/0 Z/1] [Y/1 Z/0]}]

 [{[W/0 X/0] [W/1 X/1]} {[Y/0 Z/0] [Y/1 Z/1]}] } } ~C.comp])

A Journey Through Computatuion 2/21/25, 11:39 AM

59 Copyright © 2024 by Karl Fant

2. The link can be integrated into the expression of a component network and the component
network incorporated by reference. Network netL incorporates a closure link to the above
network net.

(netL(A/{1 0}/,AB.comp/ B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
AB.comp,<=?C/[{1<={{[A/0 B/1] [A/1 B/0]}

 0<={[A/0 B/0] [A/1 B/1]} } ~C.comp])

bignetb references netL with a link once and net without a link twice.

The dependency expression.

 (bignetb(W X Y Z => C)
C<=netL(net(W X) net(Y Z)))

The entire dependency structure including the references to net and the binding portal
inherits from netL.

The inheritance expanded network expression.

 (bignetb(W/{1 0}/,W.comp/ X/{1 0}/,X.comp/
Y/{1 0}/,Y.comp/ Z/{1 0}/,Z.comp/ => C/{1 0}/,C.comp/)

C<=[netL(net(W,W.comp X,X.comp) net(Y,Y.comp Z,Z.comp)) ~C.comp])

bignetb forms a pipeline component network of half oscillations.
3.9.7.3. Figure 3.28c network expression: finer granularity of closure

bignetc of Figure 3.28c composed with three references to netL. The expression of bignetc
inherits its locality structure and closure relations from the references to netL.

The dependency expression

 (bignetc(W X Y Z => C)
C<=netL(netL(W X) netL(Y Z)))

The inheritance expanded network expression.

 (bignetc(W/{1 0}/,W.comp/ X/{1 0}/,X.comp/
 Y/{1 0}/,Y.comp/ Z/{1 0}/,Z.comp/ => C/{1 0}/,C.comp/)

C<=[netL(netL(W,W.comp X,X.comp) netL(Y,Y.comp Z,Z.comp)) ~C.comp])

bignetc contains one oscillation network bounded by half oscillations.

A Journey Through Computatuion 2/21/25, 11:39 AM

60 Copyright © 2024 by Karl Fant

3.9.7.4. Figure 3.28d network expression: integrating the link
The “all of” rank of a cross association search can serve as the enable behavior of a link.

This can save some primitive behaviors with the tradeoff of increasing the inputs of other
primitive behaviors. Whether such a tradeoff is useful depends on the specifics of a network.
bignetd is composed from component network net2 that contains the alternatively structured
links.

In the expression of net2 below ~C.close is applied to the cross association rank of “all of”
behaviors that are determining the differentness of locality C. The rank of “all of” behaviors
does double duty as interaction behaviors and as closure enable behaviors.

(net2(A/{1 0}/,AB.comp/ B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
(allofrank/{3 2 1 0}/)
allofrank/[{3<=[A/1 B/1]

 2<=[A/1 B/0]
 1<=[A/0 B/1]
 0<=[A/0 B/0] } ~C.comp]

AB.comp<=?C/{1<={allofrank/1 allofrank/2}
 0<={allofrank/0 allofrank/3} })

bignetd composed from three references to net2.

The dependency expression

(bignetd(W X Y Z => C)
C<=net2(net2(W X) net2(Y Z)))

The inheritance expanded network expression.

 (bignetd(W/{1 0}/,W.comp/ X/{1 0}/,X.comp/
 Y/{1 0}/,Y.comp/ Z/{1 0}/,Z.comp/ => C/{1 0}/,C.comp/)

C<=[net2(net2(W,W.comp X,X.comp) net2(Y,Y.comp Z,Z.comp)) ~C.comp])

bignetd contains one oscillation network bounded by half oscillations.
3.9.7.5. Figure 3.28e network expression; finest granularity of closure

In Figure 3.28e the completeness and enable behaviors of the link are more finely integrated
into the constant network locality by locality forming the longest pipeline version of the network
with length of pipeline being characterized by the number of oscillation networks from input
presentation to output assertion.

Each component net3 network contains two links and one complete oscillation network
bounded by half oscillations.

A Journey Through Computatuion 2/21/25, 11:39 AM

61 Copyright © 2024 by Karl Fant

(net3(A/{1 0}/,A.comp/ B/{1 0}/,B.comp/ => C/{1 0}/,C.omp/)
(allofrank/{3 2 1 0}/,allofrank.close/)
(A.comp B.comp)<=?allofrank/[{3<=[A/1 B/1]

 2<=[A/1 B/0]
 1<=[A/0 B/1]
 0<=[A/0 B/0] } ~allofrank.close]

allofrank.close<=?[C/{1<={allofrank/1 allofrank/2}
 0<={allofrank/0 [allofrank/3} } ~C.comp])

bignete is composed with three references to net3:

The dependency expression.

(bignete(W X Y Z => C)
C<=net3(net3(W X) net3(Y Z)))

The inheritance expanded network expression.

 (bignete(W/{1 0}/,W.comp/ X/{1 0}/,X.comp/
 Y/{1 0}/,Y.comp/ Z/{1 0}/,Z.comp/ => C/{1 0}/,C.comp/)

C<=[net3(net3(W,W.comp X,X.comp) net3(Y,Y.comp Z,Z.comp)) ~C.comp])

bignete contains four oscillation networks two of which are concurrent. The network is
bounded by half oscillations.
3.9.7.6. Webs of singularly appreciable transition completeness

The counter flowing networks form a web of singularity appreciation. In Figure 3.28c the
counter flowing networks intersect through singularly appreciable component network outputs.
In Figure 3.28e the counter flowing networks intersect through every locality, each an
appreciable singularity of transition completeness which is dependent on other localities and has
other localities dependent on it, forming a finer granularity of intersection.
3.9.7.7. Still a constant network

The closure network applied to a constant network does not affect the interaction behavior of
the constant network. All five versions of the constant network and counter flowing closure
networks in Figure 3.28 deliver the same interaction behavior. The escapement behavior of the
component oscillation networks, affects the granularity of instance of interaction time and the
throughput performance of the pipeline network.

3.10. INTERLUDE: The pipeline network
A pipeline network is a composition of linked oscillation networks bounded by half

oscillations which forms a structure of interpenetrating counter-flowing networks with
interaction transition wavefronts flowing through the pipeline network in the direction of
interaction and with closure transitions flowing through the closure network counter to the
direction of interaction flow. The counter flowing networks intersect through localities with links

A Journey Through Computatuion 2/21/25, 11:39 AM

62 Copyright © 2024 by Karl Fant

that coordinate both counter directional flows with singularly appreciable common transition
completeness relations.

The constant network within the pipeline network, regardless of the closure structure
encompassing it, remains the determiner of interaction behavior. Its behavior remains constant,
always asserting the same output for the same presented input and it continues to fulfill the
completeness of input criterion.

3.10.1. The exposed binding portal and the environment
Even though the component oscillation networks are spontaneously striving to oscillate a

pipeline network as a whole remains dependent on the environment beyond its exposed binding
portal to present monotonically transitioning input differentnesses, to provide liveness and
variability of behavior.

From this point on all networks will be pipeline networks with counter flowing interaction
and closure networks bounded by half oscillations.

3.10.2. Pipeline network interaction space
The constant network within the pipeline network remains the interaction space. The

encompassment with a closure network does not alter the constant network and its interaction
behavior.

3.10.3. Pipeline network interaction time
The flow of a wavefront of transition to D completeness from the input of the pipeline

network to its output followed by a wavefront of transition to completely N marks one instance
of interaction time for the pipeline network as a whole bounded by its binding portal and framed
by transitions to completely N wavefronts.

There can be multiple wavefronts of transition to D completeness each followed by a
wavefront of transition to completely N simultaneously flowing through stages of a pipeline
network (section 3.9.6.4 and Appendix D). The oscillation networks marking instances of
interaction time as the wavefronts of transition flow through them all cycle out of phase with
each other and there is nothing stable about their phase relations. The internal behavior of a
flowing pipeline network is an incoherence of fully coordinated but non-synchronous
transitioning. There is no means of sampling an instant of stable analytically meaningful
transition behavior across a flowing pipeline network. Only the closure network can appreciate
as a singular wholeness the dynamic flow of wavefronts of transition through the dependency
relations of the pipeline network.

The only singularly appreciable event differentiating instances of interaction for the pipeline
network is the transition of the pipeline network output to D completeness followed by its
transition to completely N marking one instance of interaction for the network as a whole.

The responsible environment
The environment still has an imposed requirement for monotonically transitioning the

input to the pipeline network. Now an input completeness half oscillation of the
pipeline network determines the appropriate delay between transitions of its input
presentation. The responsibility of the environment is still to honor the closure of the
input half oscillation of the pipeline network and if fulfilled the monotonic transitioning
requirements for all the component oscillation networks of the pipeline network and their
component primitive behaviors are also fulfilled.

A Journey Through Computatuion 2/21/25, 11:39 AM

63 Copyright © 2024 by Karl Fant

3.10.4. Nothing new.
A pipeline network is still just a network of dependency relations among primitive

association behaviors. The pipeline network emerges from the oscillation network which
emerges from the completeness of input criterion fulfilling constant network which emerges
from the primitive interaction behaviors. Each stage of emergence is just a particular
composition of primitive association behaviors defined in section 3.2 which, themselves,
emerged from the freely associating persistences and their interacting conditions in the shaking
bag of Chapter 2.

3.10.5. No external metrics
There is no coherent reference frame or external metric of space or of time relative to a

pipeline network and trying to impose an external metric onto the pipeline network contributes
nothing to either the understanding of or the effective realization of the pipeline network.

3.10.6. The transcendental view
If one wishes, the closure network of a pipeline network can be removed leaving the raw

constant network which can still be characterized as a single step mapping behavior transcending
and ignoring its internal structure with its concurrent relations and ignoring the emergent
behavior of the pipeline network.

3.11. The autonomous pipeline network: self control
An input/completeness half oscillation, instead of indicating when transitioned input can be

accepted, can use its closure to form a completely presented input. A pipeline network can auto
produce its own input. An output/enable half oscillation instead waiting for downstream closure
of the completely formed output wavefront can immediately determine it own completeness of
output and close with itself to effectively auto consume its own output wavefront,.

Before this point network behavior has been entirely dependent on presented input from an
external environment beyond the exposed binding portal of the network for liveness, for
wavefront flow. The autonomous pipeline network now transitioning its own input presentation
in its own time producing its own wavefronts is autonomously alive, is not dependent on any
behavior external to the pipeline network. The pipeline network becomes isolated from the
environment behaving independently producing its own wavefronts (liveness) in its own intrinsic
time (rate of presentation) in its own intrinsic space (the network) as illustrated in Figure 3.29.

linkX/1/1

X/1/0

X/0/1

X/0/0

Y/3

Y/2

Y/1

Y/0

btoq qtob

N

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

link

N

link

Y/{3 2 1 0}/

init init

Z/[1 0]/{1 0}/

X.comp
Y.compN

Z.comp

N

auto consume
auto produce

N

half oscillation
completeness

becomes
enable
closure

half oscillation
enable

becomes
input

presentation

N

Y.close
Z.close

Figure 3.29. Pipeline network with auto produce and auto consume.

A Journey Through Computatuion 2/21/25, 11:39 AM

64 Copyright © 2024 by Karl Fant

The expression of the network, with no activating and guiding reference from outside the
network, has no binding portal and no reference name. The network is autonomous, continually
alive and entirely on its own.

 ((=>)
(Y X Z)
Z<=[qtob(Y) ~?Z] /* auto consume */
Y<=btoq(X/[1{1<=N /* auto produce */

 0<=~?Y }
 0{1<=N

 0<=~?Y }]))
Z is dependent through qtob on Y and the converted completeness of Z. Y is dependent

through btoq on X. X/1/1 is constant /N. X/1/0 is dependent on the converted completeness of
Y. X/0/1 is constant /N. X/0/0 is dependent on the converted completeness of Y. Localities X,
Y and Z inherit their locality structure and closure relations from btoq and qtob. There are no
binding portal localities and there is no reference name. Hence there is no binding locality
directional coloring in the expression. The expression cannot be referenced and copied and does
not return a referencable result.

The network is continually presented with X/00 and will cycle indefinitely interacting X/00.
The network is autonomously behaving and free of the environment but it has lost variability of
behavior.

3.12. The embedded pipeline network: the passive environment
An autonomous pipeline network, embedded in an environment, can take full responsibility

for its own behavior and still relate to the environment for variability of behavior by sensing the
environment at its own rate through a sampling portal and imposing output behavior on the
environment at its own rate through an imposition portal. The environment is still a source of
variability of behavior for the network but it is no longer a source of liveness and time for the
network. The environment is no longer in control of the network through an exposed binding
portal.

The sampling portal and the imposition portal do not form an exposed binding portal. With
an exposed binding portal the environment references the network by name and binds external
localities to the binding portal localities. The external environment is in control of the
referencing and determines the specific bindings. The constant network passively and
dependently waits on a presentation to its binding portal from the external environment.

With the sampling portal and imposition portal the embedded network is in complete control
of referencing and opportunistically sampling non specific external differentnesses from the
relatively continuous flux of the environment and of imposing its output on the environment. The
environment is indifferently passive neither waiting on nor dependent on the embedded network.

The network is now in complete control referencing the environment rather than the
environment being in complete control referencing the network. The spontaneously behaving
differentness of the network is manipulating and appreciating the passive differentness,
information, of the external environment.

A Journey Through Computatuion 2/21/25, 11:39 AM

65 Copyright © 2024 by Karl Fant

s
e
n
s
o
r

linkX/1/1

X/1/0

X/0/1

X/1/0

Y/3

Y/2

Y/1

Y/0

btoq qtob

N

Z/1/1

Z/1/0

Z/0/1

Z/0/0

link

N

Y/{3 2 1 0}/

init init

Z/[1 0]/{1 0}/

X.comp
Y.comp

N

environment
output imposed on
the environment at
the network’s rate

Figure 3.30. A pipeline senses the environment and imposes on the environment.

((=>)
(Y Z sensor)
imposedoutput<=Z<=qtob([Y ~?Z])
Y<=btoq(X<=[sensor ~?Y]))

imposedoutput is dependent on Z which is dependent through qtob on Y and the converted
completeness of Z. Y is dependent through btoq on X which is dependent on sensor and the
converted completeness of Y.

3.13. INTERLUDE: The autonomous pipeline network
From the pipeline network with its half oscillation boundaries emerges the autonomous

network in complete control of its wavefront flow. Closure has finally rendered the constant
network independent of its environment. With the oscillation network closure first removed the
requirement of the environment to wait an appropriate interval between presentation transitions
supplying a time referent to the network. With auto produce and auto consume closure has
further removed the requirement of the environment to monotonically transition input
presentations supplying liveness to the network.

The constant network is finally in complete control of its own time and liveness on its own
behavioral merits. It is not dependent on any extrinsic causative agencies or behaviors such as a
mathematician with a pencil or an imposed clock interval or a responsible environment but is its
own causative agency continually flowing its own wavefronts. The primitive behaviors passively
subordinate to an external environment have collectively contrived to combine their external
environments to achieve autonomy and independence.

While the network still relates to an external environment for its variability of behavior the
network is in complete control of the relation. Control has migrated from the environment side of
a exposed binding portal to the network side of sampling and imposition portals. The exposed
binding portal has disappeared. The environment is now passive in relation to a determining
network. Quandary 5 of section 3.6 is resolved. The network now expressing its own liveness
and time and in complete control of the acquisition of its variability of behavior becomes an
active explorer rather than a passive servant

A Journey Through Computatuion 2/21/25, 11:39 AM

66 Copyright © 2024 by Karl Fant

3.13.1. A complex persistence
Consider at this point that the passive environment might be a pure condition expression and

that the autonomous network might be a complex persistence within it. That the sensor might be
sensitive to specific differentness conditions within the environment. That the network enables
the sensor and patiently waits for its sensor to encounter a specific condition which initiates a
wavefront through the network causing a network behavior that affects the environment. Think
proteins in cytoplasm.

3.13.2. Autonomous pipeline network space and time
The autonomous pipeline network is its own space of interaction. The monotonic transitions

between D completeness and completely N auto produced to the input of the network are the
ticks and tocks of its own interaction time. The consequent wavefront of each input flowing
through the network is one instance of interaction time delivering its own ticks and tocks to the
component oscillation networks within the autonomous pipeline network.

3.13.3. Still nothing new
An autonomous pipeline network is still just a network of dependency relations among

primitive association behaviors (section 3.10.4)
A newly introduced element here is the sensor which is a transducer sensitive to the

environment which may or may not be realizable in terms of primitive interaction behaviors.

3.13.4. No external metrics
There is no coherent reference frame or metric of space or of time relative to an autonomous

pipeline network and trying to impose an external metric onto the autonomous pipeline network
contributes nothing to either the understanding of or the effective realization of an autonomous
pipeline network.

3.13.5. The transcendental view
The closure structure can still be removed to characterize the encompassed raw constant

network as a single step mapping behavior that still always provides the same asserted output for
the same presented input but the raw constant network returns to complete dependency on the
environment.

3.14. The journey
The last sentence of Chapter 1 declared the pursuit of an accounting of interaction complete

and sufficient in itself with no need of extrinsic support. The journey began with primitive
behaviors made sufficiently expressive and continued to the constant network of dependently
related primitive behaviors which remains dependent for its liveness, its referent of time and its
source of variability of behavior on presentations of input from an external environment which is
in complete control of the passive network. The journey continued through the oscillation
network, expressing its own referent of time, to the pipeline network with its bounding half
oscillations that close on themselves expressing its own source of liveness. The autonomous

The no longer responsible environment
The isolated pipeline network now creates its own monotonically transitioning

presentation with the appropriate delay. There is no longer any responsibility imposed
on the environment. The constant network is now in complete control of itself
autonomously behaving within an indifferent passive environment.

A Journey Through Computatuion 2/21/25, 11:39 AM

67 Copyright © 2024 by Karl Fant

1. David E. Muller, “Asynchronous logics and an application to information processing”, Proceedings of
Symposium on Applications of Switching Theory in Space Technology, H. Aiken and W. F. Main eds,
Stanford University Press 1963. pp. 289-297.

2. Teresa Meng, “Synchronization design for digital systems”, (Boston, Kluwer Academic Publishers, 1991) pp
158-163

3. Tom Verhoeff, “Delay Insensitive Codes–An Overview”, Distributed Computing (1988) 3, Springer Verlag,
pp:1-8

4. DIMS (Delay Insensitive Minterm Synthesis) characterized in terms of C elements (“all of”) and OR gates
(“one of”) and monotonically transitioning dual rail encoding is an asynchronous methodology that closely
corresponds to the current discussion. The minterm in DIMS is an exhaustive search that always fulfills the
completeness criterion. DIMS was characterized as a mixed logic for practical application that did not quite
achieve its efficiency goal. It was not viewed as a coherent model of expression worthy of deeper
philosophical consideration and was not pursued as a coherent logic on its own merit. The current
discussion is not about efficiency but is about coherency.
Jens Sparsø, Jørgen Staunstrup, Michael Dantzer-Sørenson, “Design of Delay Insensitive Circuits Using
Multi-Ring Structures”, Proc. of EURO-DAC’92, Euro- pean Design Automation Conference, 1992,
Computer Society Press. pp. 15-20.

5. Alain J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits”, 6th MIT Conference on
Advanced Research in VLSI Processes, 1990, pp. 263- 277.

6. Peter A. Beerel, Recep O. Ozdag, Marcos Ferretti, “A Designers Guide to Asynchronous Design”, (New
York, Cambridge University Press, 2010) p. 1

network emerged sufficiently expressive and in complete control of itself taking from a passively
indifferent external environment instead of receiving from a controlling external environment.

3.14.1. A first principle fulfilled
An autonomous pipeline network is differentness spontaneously and dependently interacting

and changing(sections 1.8 and 2.5.6).

3.14.2. A journey not yet complete
The exposed binding portal is gone and the network is in complete control of its own

behavior but there remains a dimension of expressivity still to be considered. The common
denominator of this chapter is that every example network accepts an input which initiates a
wavefront that flows to the output and out of the network performing one isolated instance of
interaction in one isolated instance of interaction time. The following wavefront of transition to
completely N then erases the instance of interaction from the network isolating successive
instances of interaction and allowing the network to be reused with another wavefront. The
networks have no behavioral memory and no means of relating different instances of network
interaction, different interaction wavefronts, in the context of the network even when the network
is in complete control of itself (section 3.4.6.5). The next chapter addresses this expressional
inadequacy.

A Journey Through Computatuion 2/21/25, 11:39 AM

68 Copyright © 2024 by Karl Fant

Chapter 4:
Temporal differentiation

4
To this point temporal differentiation has manifested as interaction time. One flow of

transition to D completeness wavefront into through and out of a constant network followed by a
transition to completely N wavefront erasing the interaction from the constant network marked
one instance of interaction time in relation to a constant network (sections 3.5.2.2 and 3.4.6.5). A
subsequent flow through the same constant network of transition to D completeness wavefront
followed by a transition to completely N wavefront marked a different isolated instance of
interaction time in relation to the same constant network. Instances of interaction time are
differentiated in the context of the network but the constant network with no behavioral memory
is not able to account its differentnesses of interaction time. Temporal differentness does not
persist to be referenced within the context of the network precluding the constant network from
representing a complete and coherent accounting of differentness spontaneously and dependently
interacting and changing (section 1.8).

This chapter is about accounting the interaction of temporal differentnesses. Instances of
interaction do not flow out of a network but are remembered and accounted flowing within the
network which becomes a complete and coherent expression of interaction in contrast to being a
fragment of interaction expression (section 3.4.5.5).

4.1. The ring network: boundless network, endless time
Associating the output/assertion half oscillation of a pipeline network directly to its input/

presentation half oscillation forms a ring network. The pipeline network’s input and output
becomes completely internalized. The network becomes completely isolated. Interacting
wavefronts no longer flow out of the network but they also no longer flow into the network.
Whatever the network is doing it is completely accounting it.

4.1.1. The base pipeline
For this example the initial pipeline is the component pipeline networks qtob and btoq, of

Figure 3.25, linked binary to binary with quaternary half oscillation boundaries, Figure 4.1.
The dependency expression.

(baseX=> Z)
Z<=btoq(qtob(X)))

The inheritance expanded network expression.

(basepipe(X/{3 2 1 0}/,X.comp/ => Z/{3 2 1 0}/,Z.comp/)
Z,Z.comp<=btoq(qtob(X,X.comp)))

A Journey Through Computatuion 2/21/25, 11:39 AM

69 Copyright © 2024 by Karl Fant

link

X/3

X/2

X/1

X/0

Z/3

Z/2

Z/1

Z/0

link

qtob btoq

Z.compX.comp
init

N

N

Figure 4.1. Base pipeline for the ring

4.1.2. Closing the pipeline
A ring network is a composition of linked oscillation networks which must include at least

three oscillation networks to accommodate a transition to D completeness wavefront, a transition
to completely N wavefront and one bubble (Appendix D). If output assertion half oscillation
basepipe/Z is connected directly to input presentation half oscillation basepipe/X the resulting
network has only two oscillation networks. So a pipeline component must be inserted between Z
and X to form another oscillation network. The inserted pipeline component performs a shift of
quaternary differentness.

Figure 4.2. The shift buffer pipeline component.

A.comp is dependent on the completeness of B which is dependent on shifted components of
A which are dependent on ~B.comp.

The dependency expression.

((=>)
(Z:3/{3 2 1 0}/)
Z<= basepipe(shift(Z)))

Z initialized to Z/3 is dependent through basepipe and through shift on Z. The dependency
of Z on Z closes the ring. Z inherits locality structure and closure relations from basepipe/Z and
from shift/A.

link
A/2

A/1

A/0

A/3

B/3

B/2

B/1

B/0

shift

link

B/{3 2 1 0}/

init
A.comp

B.compN

(Shift(A/{3 2 1 0}/,A.comp/ =>
B/{3 2 1 0}/,B.comp/)

A.comp<=?B/[{3<=A/2
 2<=A/1
 1<=A/0
 0<=A/3} ~B.comp])

A Journey Through Computatuion 2/21/25, 11:39 AM

70 Copyright © 2024 by Karl Fant

The inheritance expanded network expression.

((=>)
(Z:3/{3 2 1 0}/,Z.comp/)
Z,Z.comp<= basepipe(shift(Z,Z.comp))

The expression has no binding portal, no reference name, no boundary localities, nothing
flows into or out of the ring, hence there is no binding portal directional coloring in the
expression. With no boundary for wavefronts to flow into the ring a D completeness wavefront
and a completely N wavefront must be initialized in the ring. This is expressed with (Z:3)
specifying that Z/3 be initialized to D (Appendix E).

link

link

X/3

X/2

X/1

X/0

Z/3

Z/2

Z/1

Z/0

link

qtob btoq

Z.compX.compN

init

N

D

N

NN

init

shift

Z.comp

basepipe

Figure 4.3. The ring network.

4.2. INTERLUDE: The ring network
Once instantiated the ring network is a completely self contained network providing its own

liveness, time and variability of behavior. The initialized transition to D completeness wavefront
followed by a transition to completely N wavefront autonomously, spontaneously and
neverendingly flow around the ring at its own rate in its own space forever or until it fails from
internal wear or external insult.

4.2.1. A new wholeness
The ring network is a wholeness of accounting representing a wholeness of expression as

well as a wholeness of network (sections 3.4.5.5 and 3.4.9.8 and 3.5.2.4). The ring network now
says everything there is to say about its interaction behavior.
4.2.1.1. The loss of singular appreciability

The ring network, with no exposed binding portal, no input or output, and with its wavefront
continually flowing around the ring network never having flowed into the ring network and
never flowing out of the ring network, has no singular referent to characterize a beginning of
instance of interaction or instance of interaction time or an end of instance of interaction or
instance of interaction time for the ring network as a whole. There is no output assertion

A Journey Through Computatuion 2/21/25, 11:39 AM

71 Copyright © 2024 by Karl Fant

boundary to always assert the same output for the same input presented to the equally
nonexistent input presentation boundary.

There is no one transition to completeness that is privileged over any other transition to
completeness in the context of the ring network as a whole. The ring network as a whole no
longer has a singularly appreciable tick of time.
4.2.1.2. The incorporated external environment

The ring network with no referent of time itself is now managing the presentation of binding
portal input for all of its component oscillation networks and hence determining instance of
interaction and instance of interaction time for each component oscillation network. Each
instance of interaction wavefront flows out of and is erased from each component oscillation
network but each instance of interaction wavefront remains within the ring network flowing to a
next interaction. No instance of interaction time wavefront is unaccountably lost from the ring
network. The ring network has become an external environment to its component oscillation
networks but an external environment fully incorporated into the ring network as a whole. The
component oscillation networks previously dependent on the wavefront initiated by the pipeline
network input presented from an external environment are now dependent on the eternal
wavefront of the ring network.
4.2.1.3. The master of interaction time

The ring network wavefront flowing around the ring uses, unuses and reuses each component
oscillation network over and over. The ring network is managing the interaction time of its
component oscillation networks but nothing manages time for the ring network as a whole. The
continually flowing ring network wavefront manifests independently flowing, self regulating
time within the ring network as a whole. There is no singularly appreciable referent of interaction
time for the flowing wavefront but it is in complete control of the flow of interaction time
nevertheless.

4.2.2. Still just a composition of primitive behaviors
A ring network is still just a network of dependency related primitive association behaviors

that emerges from the pipeline network (section 3.10.4).

4.2.3. No metrics
There is no coherent reference frame or metric of space or of time relative to a ring network

and trying to impose an external metric onto the ring network contributes nothing to either the
understanding of or the effective realization of the ring network.

4.2.4. The end of the transcendental view: a boundary crossed
The ring network cannot be transcendentally characterized abstractly as a single step

mapping behavior apart from its closure structure. Firstly, there is no mapping from a singularly
appreciable input to a singularly appreciable output. Secondly, the ring network with its closure
structure removed does not work. With the ring network the oscillation network becomes an
essential un-transcendable unit of composition.

4.3. The source ring network: making time
A completely isolated ring network can extend beyond itself by linking the assertion

boundary of any component oscillation network of the ring as an output of the ring network.
Locality S is added and in Figure 4.4 as an assertion output dependent on Z.

A Journey Through Computatuion 2/21/25, 11:39 AM

72 Copyright © 2024 by Karl Fant

link

link

X/3

X/2

X/1

X/0

Z/3

Z/2

Z/1

Z/0

link

ZS.comp

Y/1/1

Y/1/0

Y/0/1

Y/0/0

S/3

S/2

S/1

S/0
S.comp

qtob btoq

X.comp
Y.comp

N

init

N

N

D

N

N

shift

Z.comp

basepipe

X.close
Y.close ZS.close

Figure 4.4. The source ring network.

Since the ring expression cannot be referenced because it has no reference name or binding
portal the dependency expression of the ring expression is recapitulated for the source ring. For
the source ring there is no presentation locality but there is an assertion locality to be referenced
so the source ring expression invites reference with a half binding portal with reference name
source.

The dependency expression.

 (source(=> S)
(Z:3)
[Z S]<= basepipe(shift(Z))

S is dependent on Z initialized to Z/3 which is dependent through basepipe and through shift
on Z. The dependency of Z on Z closes the ring. Z flows to two destinations Z and S. S and Z
inherit locality structure and closure relations from basepipe/Z and shift/A.

The inheritance expanded network expression.

 (source(=> S/{3 2 1 0}/,S.comp/)
(Z:3/{3 2 1 0}/,Z.comp/)
[Z,Z.comp S,S.comp]<=basepipe(shift(Z,Z.comp))

The source ring can be referenced as:

through the input half oscillation of a pipeline network.

4.3.1. Source ring network behavior
The continually flowing wavefront of the source ring network produces successive

wavefronts of transition monotonically transitioning between D completeness and completely N
at S delivering discrete differentiated instances of interaction time as input to a referencing
pipeline network.

portal nested
(source())

full portal reference
source(=> M)

locality nested
M<=source()

A Journey Through Computatuion 2/21/25, 11:39 AM

73 Copyright © 2024 by Karl Fant

The pipeline network is dependent on presentations monotonically transitioning between D
completeness and completely N as a source of liveness, a source of variability of behavior and a
source of time from beyond itself honoring its closure. Its beyond, however, is not an
uncharacterized external environment but is fully characterized within the source ring network
which as a whole is not dependent on anything. As far as the source ring is concerned it is
entirely indifferent to the S portal making its continually flowing wavefront occasionally wait.

One might view the ring network “environment” as controlling the pipeline network with
input presentations as an external environment does through an exposed binding portal but the
ring network, the “environment”, is not referencing the receiving pipeline network. The receiving
pipeline network is referencing the ring network. The pipeline network initiates and is in
complete control of the reference grabbing with its closure an instance of interaction and
interaction time from the cornucopia wavefront of the ring network. This is similar to the
sampling portal of the network of section 3.12 with its closure grabbing discrete instances of
interaction from a passive and continuous external environment.

4.4. The pipeline ring network: from time to time
A ring network wavefront flow coupled to a pipeline network wavefront flow through at least

one shared oscillation network forms a pipeline ring network as in Figure 4.6. The example
pipeline ring named pipering is composed in terms of a pipeline network pipeline with btoq and
qtob connected quaternary to quaternary.

The dependency expression

(pipeline(X=> Z)
Z<=qtoq(btob(X)))

The inheritance expanded network expression:

(pipeline (X/[1 0]/{1 0}/,X.comp/ => Z/[1 0]/{1 0}/,Z.comp/)
Z,Z.comp<=qtoq(btob(X,X.comp)))

X/1/1

X/1/0

X/0/1

X/1/0

btoq qtob

Z/1/1

Z/1/0

Z/0/1

Z/0/0

link

link

init init
X.comp

N
Z.comp

N

Closing a ring through pipeline requires at least one more oscillation network and the
initialization of a D completeness wavefront which requires two oscillation networks one
initializing the D completeness wavefront followed by one initializing a completely N wavefront
to block the flow of the D completeness wavefront during initialization (Appendix E).

A Journey Through Computatuion 2/21/25, 11:39 AM

74 Copyright © 2024 by Karl Fant

The pipeline components are composed into a pipeline segment pipeseg1 initializing a D
completeness wavefront to 1 is defined.

The dependency expression.

(pipering(in => out)
(A)

[A out]<=pipeline([pipeseg1(A) in]))

The inheritance expanded network expression.

(pipering(in/{1 0}/,in.comp/ => out/{1 0}/, out.comp/)
(A/{1 0}/,A.comp/)

[A, A.comp out, out.comp]<=pipeline([pipeseg1(A, A.comp) in, in.comp]))

To form the pipeline ring the components of the in and out localities split and associate
separately. in/1 and out/1 connect to the ring. in/0 is the network input and out/0 is the network
output. The syntax [A out]<=pipeline indicates that the output of pipeline associates to A
and to out corresponding to the topmost level of composition of the pipeline output locality Z.

Pipeline component initializing to 1.

 (init1(A/{1 0}/,A.comp/ =>
B:1/{1 0}/,B.comp/)

A.comp <=?B<=[A ~ B.comp])

link

D

N
A

A.comp

1
0 B

B.comp

1
0

init

init1

Pipeline component initializing to N.

(initN(A/{1 0}/, A.comp/ =>
B:N/{1 0}/, B.comp/)

A.comp <=?B<=[A ~ B.comp])

link

N

N
A

A.comp

1
0 B

B.comp

1
0

init

N

initN

Pipeline segment to inialize a D completeness wavefront.

(pipeseg1(A/{1 0}/,A.comp/ => B/{1 0}/,B.comp/)
B,B.comp<=initN(init1(A,A.comp)))

link

N

link
D

N

NA B

A.comp

1
0

1
0

init

N

pipe1

A Journey Through Computatuion 2/21/25, 11:39 AM

75 Copyright © 2024 by Karl Fant

Locality Z/1 associates to A and Z/0 associates to out. This association relation is illustrated on
the left of Figure 4.5.

The syntax <=pipeline([A in]) indicates that the input of pipeline/X associates from B
and in corresponding to the topmost level of composition of the pipeline input locality. Locality
B associates to X/1 and locality in associates to X/0. This association relation is illustrated on the
right of Figure 4.5.

The “all of” relations between the reference and the definition associate then the ordered
terms within the “all of” relations associate.

[A,A.comp out,out.comp]<=pipeline([pipeseg1(A,A.comp) in,in.comp]))

(pipeline(X/[1 0]/{1 0}/,X.comp => Z/[1 0]/{1 0}/,Z.comp) (pipeline(X/[1 0]/{1 0}/,X.comp => Z/[1 0]/{1 0}/,Z.comp)
pipeline reference output association pipeline reference input association

Figure 4.5. Binding portal associations for pipeline reference.

linkX/1/1

X/1/0

X/0/1

X/0/0

btoq qtob

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

init init

N

in/1

in/0
out/1

out/0

N

A/1

A/0

U.close
A.comp

in.comp
out.comp

link

pipeline

N

B/1

B/0
link

N D

N

N

pipeseg1

nested

nested

nested

Figure 4.6. The pipeline ring network.

4.4.1. Pipeline ring behavior
The pipeline network has an exposed binding portal and just like the pipeline networks of the

previous chapter receives presented input and delivers asserted output through its exposed
binding portal. Each wavefront begun by the presented input in will interact with a wavefront
from the ring network as it flows to the output out of the pipeline network. There has to be a first
D completeness - completely N wavefront pair initialized in the ring network that will interact
with the first transition to D completeness - completely N wavefront pair presented to the
pipeline network. In this case the D completeness wavefront is initialized in component network
pipeseg1 and the completely N wavefront is initialized in locality Z/1. The first wavefront pair
entering the pipeline after initialization interacts with the initialized wavefront pair in the ring

A Journey Through Computatuion 2/21/25, 11:39 AM

76 Copyright © 2024 by Karl Fant

network. This first instance of interaction produces the first D completeness wavefront to enter
the ring network which is a memory of the first pipeline instance of interaction. The following
completely N wavefront overwrites the D completeness wavefront in the pipeline network but
the D completeness wavefront in the ring is not overwritten and lingers in the siding of the ring.
The second D completeness wavefront entering the pipeline network interacts with this first
pipeline instance of D completeness interaction wavefront lingering in the ring network. The
third D completeness wavefront to enter the pipeline network will interact with the memory of
the second pipeline D completeness instance of interaction lingering in the ring network. And so
on.

The ring network coupled to the pipeline network with its wavefront flowing backward in
pipeline space and forward in pipeline time enables a pipeline network to retain an interaction
result wavefront and associate it with and interact with a future input wavefront of the same
pipeline network. A present instance of interaction wavefront interacts with a past instance of
interaction wavefront. The network now has an internal memory establishing an interaction
dependency relation across different instances of interaction time. Temporal memory has
emerged in relation to the network. Such a relation was not possible in the networks of Chapter
3.

The pipeline ring network is the first example of a network with an exposed binding portal
that is not constant. The pipeline ring network as a whole no longer asserts the same
completeness of output for the same completeness of presented input.

4.5. INTERLUDE: A collision of expression regimes
The pipeline ring network represents a collision of expression regimes. The environment

beyond the exposed binding portal is not in complete control of the network behavior because of
the ring and the ring within the network is not in complete control of the network behavior
because of the exposed binding portal. There are two sources of wavefront flow, of liveness and
of time. The colliding wavefront sources cooperate and coordinate through a shared oscillation
network but cooperation is not an arrow in the quiver of either regime.

A Tth wavefront flows into the pipeline network through the binding portal and a Tth
wavefront flows out of the pipeline network. The fact that there is a ring network coupled to the
pipeline network associating and interacting different instances of interaction time inside the
pipeline network is not visible to the exposed binding portal. The external environment
presenting to the exposed binding portal, however, must take into account this invisible influence
on the interaction behavior of the pipeline which varies from presentation to presentation.

4.5.1. The environment expression regime
It is this influence on behavior not visible through the exposed binding portal (side effect)

that concerns functional programming which strives to maintain, at all cost, the constancy of the
network expression (stay functional) and for the environment presentation through the exposed
binding portal to be in complete control of the interaction (referential transparency), i.e. all
sources of wavefront flow are presented from the external environment and there are no sources
of wavefront flow, no expressions of liveness or of time, from within the network itself such as a
memory relating different instances of interaction. The functional view of interaction cannot get
out of Chapter 3.

A Journey Through Computatuion 2/21/25, 11:39 AM

77 Copyright © 2024 by Karl Fant

4.5.2. The network expression regime
The goal of this narrative is to completely characterize interaction in terms of a network of

dependency relations among primitive behaviors in complete control of itself, i.e that all sources
of wavefront flow are from within the network expression and there are no sources of wavefront
flow, no expressions of liveness or of time, presented from outside the network expression.

4.5.3. The exposed binding portal
The difference between these two expression regimes is the presence of or the absence of a

binding portal exposed to an environment unaccounted by the network. If a network possesses a
single exposed binding portal then the entire network and all of the internal sources of wavefront
flow, the rings, will patiently wait on the presentation from the exposed binding portal, i.e. the
external unaccounted environment remains in complete control of the liveness and temporal
behavior of the network. With the pipeline ring network the external environment remains in
control.

An exposed binding portal is a leak of accountability in the context of the network (section
3.5.2.4). The network cannot encompass a complete accounting of interaction if it remains
dependent on an exposed binding portal. The unaccounted environment can be an arbitrarily
complex interaction (a human?) just beyond the exposed binding portal. The only way for a
network to completely account its interaction is for the network to not have any binding portals
exposed to an unaccounted external environment. The network must be in total control of all
relations within the network and with any external environment. Assuming a responsible external
environment is not an option for the network.

4.5.4. Still nothing new
The pipeline ring network is still just a network of dependency relations among primitive

behaviors.Nothing new has been introduced.

4.5.5. No metrics
There is no coherent reference frame or metric of space or of time relative to a pipeline ring

network as a whole and trying to impose an external metric onto the pipeline ring network
contributes nothing to either the understanding of or the effective realization of the pipeline ring
network.

4.6. Removing the exposed binding portal
The exposed biding portal of Figure 4.6 can be removed and its boundary incorporated into

the network expression by closing the pipeline into a ring to form a network of coupled rings, by
the half oscillations of the pipeline closing on themselves forming an autonomous pipeline
network and by linking the pipeline network to ring networks forming a network of coupled and
linked rings.

4.6.1. The coupled ring network
The pipeline component network of the pipering network can be closed by associating its

output to its input through pipeseg1 forming a network of two rings coupled through a shared
oscillation network as in Figure 4.7. The new ring still has to be at least three oscillation
networks and must have an initialized D completeness and completely N wavefront pair so the
pipeseg1 pipeline component network is needed again.

A Journey Through Computatuion 2/21/25, 11:39 AM

78 Copyright © 2024 by Karl Fant

((=>) (out:0/{1 0}/,out.comp/)
out,out.comp<=pipering(pipeseg1(out,out.comp)))

link
X/1/1

X/1/0

X/0/1

X/0/0

btoq qtob

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

init init

Z/[1 0]/{1 0}/

out/1

N

A/1

A/0

U.close

out.comp

X/[1 0]/{1 0}/

B/{1 0}/

link

pipeline

N

B/1

B/0

B/{1 0}/

link

N D

N

N

pipeseg1

nested

nested

nested

N

pipeseg1

N

A/1

A/0

U.close

B/{1 0}/

link

B/1

B/0

B/{1 0}/

link

N D

N

nested

nested

out/0

Figure 4.7. The network of two coupled rings.

Each ring is an internal source of wavefronts and of time which times are coordinated
through a shared oscillation network. Neither ring cares that its wavefront might be delayed by
the other ring. Each oscillation network including the shared oscillation network mark an
instance of interaction time as the ring wavefronts flow through them. But the interaction
network as a whole does not mark instances of interaction time. The two wavefronts form one
single never ending instance of interaction time.

4.6.2. The autonomous pipeline network
In Figure 4.8 the exposed binding portal half oscillations of the component pipeline network

close on themselves forming an autonomous pipeline network. The pipeline ring network
becomes self determined like the network of Figure 3.30.

A Journey Through Computatuion 2/21/25, 11:39 AM

79 Copyright © 2024 by Karl Fant

((=>)
(sensor/{1 0}/,sensor.close out/{1 0}/,out.close)

out.close<=?out<=pipering(sensor,sensor.close))

link
X/1/1

X/1/0

X/0/1

X/0/0

btoq qtob

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

init init

Z/[1 0]/{1 0}/

N

N

A/1

A/0

U.close

X/[1 0]/{1 0}/

B/{1 0}/

link

pipeline

N

B/1

B/0

B/{1 0}/

link

N D

N

N

pipeseg1

nested

nested

nested

imposition portal
sensor portal

s
e
n
s
o
r

environment

N

Figure 4.8. The pipeline network of pipering with auto produce and auto consume.

4.6.3. The network of coupled and linked rings
The binding portal half oscillations of the component pipeline network are linked to rings in

Figure 4.9 which supply the input and receive the output of the pipeline. One more pipeline
component buff that does not initialize is needed to form the three oscillation ring networks.

(buff(A/{1 0}/,A.comp/ => B/{1 0}/,B.comp/)
A.comp<=?B<=[A ~Bcomp])

link
A

A.comp

1
0 B

B.comp

1
0

init

N

buff

A Journey Through Computatuion 2/21/25, 11:39 AM

80 Copyright © 2024 by Karl Fant

Network sourcering is expressed using buff and init1 and initN from section 4.4.

 (sourcering(=> out/{1 0}/,out.comp)
(Z/{1 0}/,Z.close)

(out,out.comp Z,Z.close)<=initN(init1(buff(Z,Z.close))))

Network sinkring is a single rail ring that sinks the output wavefront.

(sinkring(in/{1 0},in.comp/ =>)
(A/ B/:D C/:N D/)

A<=?[in D] [in.comp B]<=[A ~C]
C<=[B ~D] D<=[C ~B]

link

D

N

1
0

init

init1

link

N

N

init

N

initN

link

1
0

init

N

buff

out

link

init

initD

linkN

init

N

initN

link

init

N

buffD
A B C D

A Journey Through Computatuion 2/21/25, 11:39 AM

81 Copyright © 2024 by Karl Fant

The pipeline ring network with input and output ring caps.

((=>)
sinkring(pipering(soucering())))

link
X/1/1

X/1/0

X/0/1

X/0/0

btoq qtob

link

Z/1/1

Z/1/0

Z/0/1

Z/0/0

init init

Z/[1 0]/{1 0}/

N

N

A/1

A/0

U.close

X/[1 0]/{1 0}/

B/{1 0}/

link

pipeline

N

B/1

B/0

B/{1 0}/

link

D

N

pipeseg1

nested

nested

nested

link

D

N

1
0

init

init1

link

N

N

init

N

initN

link

1
0

init

N

buff
out

link

init

initD

link
N

init

N

initN

link

init

N

buffD
A B C D

N

N

sourcering

sinkring

Figure 4.9. The pipeline network of pipering linked to rings.

The component pipeline network is coupled to a ring through a shared oscillation network
and is linked to an input ring and an output ring. All sources of wavefront flow are within the
network.

4.7. INTERLUDE: The self determined network
Rings coupled through shared oscillation networks, rings linked through shared pipelines and

imposition portals and sampling portals support indefinitely complex self determined network
expressions. In the network of Figure 4.9 there are three different wavefronts in three different
rings flowing and coordinating their flow in relation to each other. Consider the possibility of a

A Journey Through Computatuion 2/21/25, 11:39 AM

82 Copyright © 2024 by Karl Fant

trillion mutually coordinating and interacting wavefronts flowing in a network of a trillion linked
and coupled rings.

4.7.1. Nothing in control
With no exposed binding portal there is no singular authority that determines liveness, time

and wholeness for the self determined network (sections 3.5.2.4 and 3.4.5.5). There is only the
network itself and its intrinsic wavefronts. A self determined network is egalitarian (section
4.2.1). No boundary is more authoritative than any other boundary. Everything is equally
subordinate to everything else. Everything is equally dependent on everything else. Everything is
equally determinative. There is nothing referentially central. There is nothing referentially
global. There is no extrinsic authority. There is no intrinsic authority. There is only wholeness of
network and wholeness of expression. There is nothing that references a self determined
network. A self determined network does not report to anything else. A self determined network
is a complete accounting of interaction within itself free to move through and relate to an
external environment and to interact with other self determined networks.

4.7.2. No appreciable singularity of network behavior
With no exposed binding portal there is no singularly appreciable referent, no tick, of

instance of interaction or instance of interaction time in relation to the self determined network
as a whole. There is only the incoherent transitioning cacophony of its component oscillation
networks (sections 3.5.2.3 and 3.10.3). The only agency capable of effectively appreciating the
cacophony of interaction behavior within a self determined network is the counter flowing
closure network (section 3.9.7 and 3.10.3) which is also an integral part of the self determined
network managing the cacophony of inchoherent behavior in terms of the coherency of
dependency completeness relations.

4.7.3. Dimensions of differentiation
Differentness of condition (Chapter 2) and differentness of association (Chapter 3),

interpenetrating, collaborating and mutually extending, can be considered the first two
dimensions of differentiation and its interaction (Chapter 5). The differentness of wavefronts of
change flowing through the first two dimensions forms a third dimension of temporal
differentness of interaction (Chapter 4) which is not persistently referencable as are the first two
dimensions.

4.7.4. The temporal dimension of differentiation
While flowing wavefronts of transition use, unuse and reuse the differentness of each

component oscillation network over and over extending their expression of differentness through
interaction time there is nothing that similarly reuses and extends the differentness of interaction
time over and over. Differentness of interaction time can never be reused because each instance
of differentnesses of interaction time is irretrievably erased, irreferencibly unused, by the
following transition to completely N wavefront.

Interaction time is ephemerally self limiting but it is also indefinitely self extending (sections
3.4.6.5 and 3.5.2 and 3.5.2.1). Transition to D completeness wavefronts interact producing
subsequent transition to D completeness wavefronts which interact producing subsequent
transition to D completeness wavefronts and so on. D completeness wavefronts flowing
progressively and indefinitely represent the flow of time for a self determined network. A D
completeness wavefront trails behind itself D completeness bubbles (section 3.9.6.4 and
Appendix D). It is the D completeness bubbles that the following wavefront of transition to

A Journey Through Computatuion 2/21/25, 11:39 AM

83 Copyright © 2024 by Karl Fant

completely N wavefront erases. A transition to completely N wavefront cannot overtake and
erase a transition to D completeness wavefront. Similarly a transition to D completeness
wavefront can only flow into completely N bubbles and cannot overtake and compromise a
completely N wavefront.

In a self determined network D completeness wavefronts form narrow bands of continually
progressing transition behavior followed by the transition to completely N wavefronts. Each ring
network supports one bandlette of D completeness wavefront. These narrow bands of D
completeness transition behavior form the dimension of temporal differentiation within which
differentnesses of interaction time can associate and interact. Interaction time is the last but
indefinitely extending dimension of differentiation and interaction.

4.8. The LFSR network: interacting differentnesses of time
The LFSR (Linear Feedback Shift Register) network of Figure 4.10 is a network of 5 rings

with 6 independently flowing wavefronts coupled through a structure of shared oscillation
networks. Each wavefront represents a different instance of interaction time with 5 instances
interacting through a shared pipeline network.

The LFSR network is constructed with pipeline component networks pipe1 which initializes
a wavefront to 1, pipe0 which initializes a wavefront to 0, pipeN which initializes a wavefront to
completely N and a pipeline of XOR networks.

4.8.1. Pipeline component networks for LFSR

Pipeline component initializing to 1

(init1(A/{1 0}/,A.comp/ => B:1/{1 0}/,B.comp/)
A.comp <=?B<=[A ~ B.comp])

Pipeline component initializing to 0

(init0(A/{1 0}/, A.comp/ => B:0/{1 0}/, B.comp/)
A.comp <=?B<=[A ~ B.comp])

Pipeline component initializing to N

(initN(A/{1 0}/, A.comp/ => B:N/{1 0}/, B.comp/)
A.comp <=?B<=[A ~ B.comp])

link

D

N
A

A.comp

1
0 B

B.comp

1
0

init

init1

link

N

D
A

A.comp

1
0 B

B.comp

1
0

init

init0

link

N

N
A

A.comp

1
0 B

B.comp

1
0

init

N

initN

A Journey Through Computatuion 2/21/25, 11:39 AM

84 Copyright © 2024 by Karl Fant

4.8.2. Initializing pipeline segment networks for LFSR

4.8.3. XOR pipeline component network for LFSR

4.8.4. The isolated LFSR network

The dependency expression

((=>) ((B C D E F O)/{1 0}/,*.close)
F<=pipe1(E<=pipe0(D<=pipe1(C<=pipe0(B<=pipe0(pipe0(O

<=XOR(F XOR(XOR(B C) XOR(D E))))))))))
How to represent the two closures?
F is dependent through pipe1 on E which is dependent through pipe0 on D which is

dependent through pipe1 on C which is dependent through pipe0 on B which is dependent
through pipe0 and through pipe0 on O which is dependent through XOR on F and XOR which
is dependent through XOR on B and C, and is dependent through XOR on D and E. The
dependence of O on F E D C and B and the dependence of each of them on O closes each ring
through the XOR network.

Localities B, C, D and E each associates to two places which flow cannot be represented
with syntax relation but must be represented with name correspondence.

pipe1 pipeline segment

(pipe1(A/{1 0}/, A.comp => B/{1 0}/, B.comp)
 B, B.comp <=initN(init1(A.comp)))

pipe0 pipeline segment

 (pipe0(A/{1 0}/, A.comp => B/{1 0}/, B.comp)
 B, B.comp <=initN(init0(A, A.comp)))

link

N

link
D

N

NA B

A.comp

1
0

1
0

init

N

pipe1

pipe0

link

N

link
N

D

NA B

A.comp B.comp

1
0

1
0

init

N

(XOR(A/{1 0}/, AB.comp B/{1 0}/,AB.comp =>
C/{1 0}/,C.comp)

AB.comp <=?C/[{1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 /B/1]} }

~ C.comp])

C/1

C/0

n

C.comp

A/1

A/0

B/1

B/0

AB.comp
init

AB
10

01

00

11

A Journey Through Computatuion 2/21/25, 11:39 AM

85 Copyright © 2024 by Karl Fant

The inheritance expanded network expression.

((=>) (B/{1 0}/,B.comp C/{1 0}/,C.comp D/{1 0}/,D.comp
 E/{1 0}/,E.comp F/{1 0}/,F.comp O/{1 0}/,O.comp)

F,F.comp<=pipe1(E,E.comp
 <=pipe0(D,D.comp
 <=pipe1(C,C.comp
 <=pipe0(B,B.comp
 <=pipe0(pipe0(O,O.comp
 <=XOR(F,F.comp

XOR(XOR(B,B.comp C,C.comp)
 XOR(D,D.comp E,E.comp))))))))))

0

0
10

1

0
1

0
10

1

0
1

0
1

0
10

1

init
N

init

D

N

N
1

0

N

N

N

N

N

init

N

D

1

0
N

N

N

D

1

0
N

N

init

N

D

1

0
N

N

D

N

N
1

0

N

N

D

1

0

D D

D D

1

O

B

C

D
E

F

N

Figure 4.10. LFSR example network of multiple coupled rings

Figure 4.11 illustrates the LFSR network with 6 different wavefronts continually flowing
around the 5 different rings of the network representing 6 differentnesses of time 5 of which
interact through the shared XOR pipeline.

A Journey Through Computatuion 2/21/25, 11:39 AM

86 Copyright © 2024 by Karl Fant

The 5 rings are color coded in Figure 4.11 to highlight their sharing of the peripheral
oscillation networks.

0

0
10

1

0
1

0
10

1

0
1

0
1

0
10

1

init
N

init

D

N

N
1

0

N

N

N

N

N

init

N

D

1

0
N

N

N

D

1

0
N

N

init

N

D

1

0
N

N

D

N

N
1

0

N

N

D

1

0

D D

D D

1

O

B

C

D
E

F

N

Figure 4.11. Coupled rings and their shared pipeline components.

4.8.5. The LFSR source network
Locality O of the LFSR can link to a pipeline network making it a source ring network. An

assertion locality out dependent on locality O is added to the LFSR expression as a
referenceable output.

The network expression.

(LFSR(=> out/{1 0}/,out.comp/) (B/{1 0}/,B.comp/ C/{1 0}/,C.comp/
 D/{1 0}/,D.comp/ E/{1 0}/,E.comp/ F/{1 0}/,F.comp/ O/{1 0}/,O.comp/)

F<=pipe1(E<=pipe0(D<=pipe1(C<=pipe0(B<=pipe0(pipe0(O
<=[XOR(F XOR(XOR(B C) XOR.(D E))) ~out.comp]))))))
out<=O)

A Journey Through Computatuion 2/21/25, 11:39 AM

87 Copyright © 2024 by Karl Fant

0

0
10

1

0
1

0
10

1

0
1

0
1

0
10

1

init
N

init

D

N

N
1

0

N

N

N

N

N

init

N

D

1

0
N

N

N

D

1

0
N

N

init

N

D

1

0
N

N

D

N

N
1

0

N

N

D

1

0

D D

D D

1

O

B

C

D
E

F

N

out

D

Figure 4.12. LFSR source network.

The LFSR is referenced as

((LFSR())) or as dest<= LFSR() or as LFSR(=> dest)

4.9. The immersed ring network: engaging the environment
The immersed ring network of Figure 4.13 is a network of two coupled rings with an

imposition portal to influence the environment and a sampling portal sensitive to the effects of
the imposition on the environment forming an interaction network capable of remembering and
learning.

4.9.1. The pipeline component networks for the immersed ring network

(init2(A/{2 1 0}/,A.comp/ =>
B:2/{2 1 0}/,B.comp/)

A.comp <=?B<=[A ~B.comp])

link
N

A.comp

A/1
A/0

B.comp
init

init2

DA/2

B/1
B/0

B/2

N

A Journey Through Computatuion 2/21/25, 11:39 AM

88 Copyright © 2024 by Karl Fant

4.9.2. The behavior interaction pipeline component network

4.9.3. The arbitration pipeline component network
The arbiter (section 3.2.1)

{{Ain Bin => Aout Bout}}

arbitrates the continual liveness flow comfy with the occasional sensor flow danger into the
network as a locality judgement of two mutually exclusive differentnesses.

(initN(A/{2 1 0}/, A.comp/ =>
B:N/{2 1 0}/, B.comp/)

A.comp <=?B<=[A ~B.comp])

link

N
B.compA.comp

init

initN

N

A/1
A/0

A/2

B/1
B/0

B/2

N

N

(behmod(X/{behA behB behC}/,in.comp judgement/{bad notbad}/,in.comp =>
Z/{behA behB behC}/,Z.comp)

in.comp<=?Z/{behA<=[{[X/behC judgement/bad]
 [X/behA judgement/notbad]} ~Z.comp]

 behB<=[{[X/behA judgement/bad]
 [X/behB judgement/notbad]} ~Z.comp]

 behC<=[{[X/behB judgement/bad]
 [X/behC judgement/notbad]} ~Z.comp]
})

X/behA
X/behC
X/behB

judgement/bad
judgement/notbad

Z/behA

Z/behC

Z/behB

in.comp
Z.compn

A Journey Through Computatuion 2/21/25, 11:39 AM

89 Copyright © 2024 by Karl Fant

The dependency relations: judgement is dependent through the arbiter on uhoh which is
dependent on the sensor and on carryon which is dependent on the auto produce. Locality
judgement is enabled as a locality but each condition of the locality closes individually with its
pre arbiter source.

4.9.4. The immersed ring network

The dependency expression.

((=>) (Z)
Z<=behmod(init2(initN(Z)) next()))

The inheritance expanded expression.

((=>) (Z/{2 1 0}/,Z.comp)
Z, Z.comp <=behmod(init2(initN(Z, Z.comp)) next()))

(next(=> judgement/{bad notbad}/,judgement.comp/)
(carryon/ uhoh/ comfy/ danger/)
bad.close<=judgement/bad<=[uhoh ~ judgement.comp]

 notbad.close<=judgement/notbad<=[carryon ~ judgement.comp]
{{danger<=[sensor ~bad.close] (comfy<=[~comfy ~notbad.close] => uhoh carryon}})

Aout

Bout

Ain

Bin

Arbitrate two independent places
of association into a single locality.

M
U
T
E
X

carrryon

uhoh

auto produce
always asserted

occasionally
triggered

judgement/bad n

n

n

Arbiter

sensor

N

n
n

n

environment

judgement/notbad

judgement.comp

comfy

danger

bad.comp

notbad.comp

bad.comp

notbad.comp

n

n

A Journey Through Computatuion 2/21/25, 11:39 AM

90 Copyright © 2024 by Karl Fant

Arbitrate two independent places
of association into a single locality.

shared
pipeline component

M
U
T
E
X

carryon

uhoh

notbad

bad

auto produce
always asserted

occasionally
triggered

If bad judgement
 change behavior
if notbad judgement
 retain last behavior.

behA

behB

behC

behA

behB

behC

judgement

behavior feedback ring
N

D

N

N

n

n

n

n

environment ring

environm
ent

Arbiter

sensor

N

memory ring:
remembering previous

behavior

n
n

n

behaviors Z

YX

Aout

Bout

Ain

Bin comfy

danger

n

n

Figure 4.13. Linked rings with part of one ring flowing through the environment.

The upper ring of Figure 4.13 remembers the imposed behavior. The lower ring flowing
partially through the environment determines whether the imposed behavior (section 3.12)
should change or not. If the sensor’s (section 3.12) closure is D the sensor will monitor the
environment. If the monitoring exceeds some threshold the sensor will transition its output to D.
When the closure becomes N it will transition its output to N. Upon which its closure will
transition to D and the sensor will begin monitoring its input again. A BAD response from the
sensor might be pain or frustration or danger. In the absence of a BAD response from the
environment the sensor’s output remains at N and the network remains alive from the auto
produced, NOTBAD (section 3.11), continually presenting the same differentness to the
environment.

The sensor BAD and the auto produce NOTBAD are happening independently and are not
coordinated. They might even transition to D simultaneously. The arbiter receives the two
uncoordinated flows BAD and NOTBAD and combines them into a single locality of mutually
exclusive judgement conditions, presented to the network (section 3.2.1 and Appendix C) .The
linked rings coupled through the interaction of judgement and X are continually alive
continually imposing behavior on the environment at their intrinsic throughput rate and only
occasionally does the environment respond with an indication that behavior should be changed.

A Journey Through Computatuion 2/21/25, 11:39 AM

91 Copyright © 2024 by Karl Fant

If BAD continues to be asserted the network will continue to change its behavior until it finds
a behavior that no longer asserts BAD. When BAD ceases the auto produce will play through the
arbiter with NOTBAD and the network will continue asserting the last behavior that did not
elicit BAD. If none of the available behaviors unassert BAD then the network is in either mortal
danger or chronic depression.

The immersed network through its spontaneously interacting differentnesses, is manipulating
and appreciating the passive differentnesses of the external environment. While an immersed
network can manipulate passive differentness, information, there is nothing manipulating the
immersed network which is self contained and self determined. For example, while sequential
computers are designed, implemented and manipulated by humans there is no designer and
implementor of humans which must arise and behave entirely on their own merits.

4.10. The memory ring network: Stopping time
A wavefront presented to a closure link will wait indefinitely at the link for the closure

enabling the wavefront to flow through the link. This behavior of indefinitely waiting for an
enable can be used to store a wavefront and retrieve the wavefront. A ring can be configured such
that a wavefront in the ring is caused to wait indefinitely at a closure link until an enable
wavefront such as a read operation arrives. The memory ring has a binding portal through which
write wavefronts and read write directives are presented. When the stored wavefront is enabled
out of the pipeline ring it flows through the output of the pipeline ring and also flows around the
ring back to the storage closure link to be read again. The memory ring can be written by
enabling the wavefront at the wait closure link to be consumed making way for a new wavefront
to flow into the pipeline ring to the closure link.

Wavefronts must be stopped and stored in N-D pairs so it requires a successive pair of
closure links to stop a flowing wavefront. In Figure 4.14 the D completeness wavefront
initialized to 0 is stored in locality SD. The following completely N wavefront is stored in
locality SN.

The stretched behaviors

“all of” “one of”

represent behaviors spanning arbitrarily sized localities of differentness.

OP/write
OP/read

nn
in

outD

auto
consume

in.comp
out.comp

OP.comp

return

memring

SN SD return

return.comp

N

N
SD.comp

SN.comp

Figure 4.14. The memory ring network.

A Journey Through Computatuion 2/21/25, 11:39 AM

92 Copyright © 2024 by Karl Fant

The memory ring network expression

(memring(in/[31-0]/{1 0}/,in.comp/ OP/{read write}/,OP.comp/ =>
out/[31-0]/{1 0}/,out.comp/)

 (return/[31-0]/{1 0}/,return.comp/ SN/[31-0]/{1 0}/,SN.comp/
SD:0/[31-0]/{1 0}/,SD.comp/)

SD.comp <={?(out, return)<=[SD OP/read ~[out.comp return.comp]]
 ?[SD OP/write] }

SN.comp <=?SD<=[SN ~~ SD.comp]
in.comp <=[(OP.comp, return.comp)<=?SN

<=[{return [in OP/write]} ~ SN.comp] OP/write])

4.10.1. memring read behavior
When OP/read transitions to D and out.comp transitions to N the stored D completeness

wavefront is enabled to locality (return out) leaving locality SD a D bubble. The completely N
wavefront stored in locality SN flows into the D bubble of locality SD leaving locality SN a N
bubble. The D completeness wavefront in return flows into the N bubble of locality SN and
OP.comp transitions to D.

When OP.read transitions to N and out.comp transitions to D locality (return out) becomes
a D bubble. The completely N wavefront in locality SD flows into locality (return out) leaving
locality SD a N bubble. The D completeness wavefront in locality SN flows into locality SD
leaving locality SN a D bubble. The completely N wavefront in locality return flows into
locality SN and OP.comp transitions to N. out.comp transitions to N and the memring is ready
for a next OP.

4.10.2. memring write behavior
When OP/write transitions to D the D completeness wavefront stored in locality SD is

enabled to the auto consume locality leaving locality SD a D bubble. The completely N
wavefront stored in locality SN flows into the D bubble of locality SD leaving locality SN a N
bubble. locality in is enabled into locality SN and locality in becomes a D bubble. Locality
OP.close transitions to D.

When OP/write transitions to N the auto consume locality becomes a D bubble. The
completely N wavefront in SD is enabled to the auto consume locality leaving locality SD a N
bubble. The D completeness wavefront in locality SN flows into locality SD leaving locality SN
a D bubble. When locality in transitions to completely N the completely N wavefront flows into
locality SN and OP.comp transitions to N and the memring is ready for a next OP.

OP/write and the in wavefront are “all of” related which must trace back to a common
source, such as the decode of an instruction, that establishes the relation. The ring is initialized
with a wavefront so there is always a wavefront stored in the memory. It is never empty. A read
will always succeed and a write will always succeed.

4.11. A network of addressable memory rings: arranging time
Memory ring networks can be composed into a large addressable wavefront memory. Figure

4.15 expressed as a divergent-convergent network of “one of” related branches each branch

A Journey Through Computatuion 2/21/25, 11:39 AM

93 Copyright © 2024 by Karl Fant

containing a memory ring. Each memory ring represents differentness of both place of
association and differentness of content. The wavefront stored in the ring is differentness of
content. The address of the ring branch references differentness of place of association within the
memory network which represents differentness of wavefront time. The memory network is
indifferent to the differentness of wavefront content in any of its branch memory rings.

inO
P/
{r
ea
d,
w
rit
e}

ou
t.c
om

p

ou
t

addO
P.com

p

in.com
p

ad
dr
en
ab
le
/3

ad
dr
en
ab
le
/2

ad
dr
en
ab
le
/1

ad
dr
en
ab
le
/0

S
D

OP/write

OP/read

nn
A

D
S
N N

S
D

OP/write

OP/read

nn
A

D
S
N N

S
D

OP/write

OP/read

nn
A

D
S
N N

S
D

OP/write

OP/read

nn
A

D
S
N N

ou
t/3

ou
t/2

ou
t/1

ou
t/0in

in

in

in

Figure 4.15. Addressable memory of memory rings.

Dependency expression for ram:

A Journey Through Computatuion 2/21/25, 11:39 AM

94 Copyright © 2024 by Karl Fant

(ram(in addrenable/{3 0}/ OP => out)
(out/{3 0})

readout<= {out/3-0<=memring(in [addrenable/3-0 OP])})
addrenable/{3 0}/ is not inherited but is defined in ram specifying the size of the memory.

Inheritance expanded network expression.

(ram(in/[31-0]/{1 0}/,in.comp addrenable/{3 0}/,addOP.comp
OP/{read write}/,addOP.comp => out/[31-0]/{1 0}/,out.comp)
out,out.comp<= {memring(in,in.comp

[addrenable/0,addOP.comp OP,addOP.comp])
 memring(in,in.comp

[addrenable/1,addOP.comp OP,addOP.comp])
 memring(in,in.comp

[addrenable/2,addOP.comp OP,addOP.comp])
 memring(in,in.comp

[addrenable/3,addOP.comp OP,addOP.comp])
 })

memring being dependent on addrenable/{3 0} and on out/{3 0} is instantiated four times
each receiving the corresponding components of addrenable/x and out. in and OP are
distributed to all four intances of memring. addrenable determines which instance of memring
receives OP and performs the specified OP.

Being able to stop a wavefront and to retrieve it on demand allows the rearrangement of
wavefront flow through time and enables the possibility of controlling wavefront flow through
dynamically constructed dependency networks with wavefront instances of interaction being
stopped and saved in the addressable memory then being retrieved as needed. In particular the
one behavior at a time sequential interpretation of dependency networks is enabled.

4.12. A most primitive sequence controller
Any interaction network expression can be decomposed into a sequence of simple behaviors

that realize the dependency relations among the interaction network behaviors(section 1.1.1).
The difficulty with one at a time sequencing of behaviors is that it forms a one dimensional
behavior space in which wavefronts cannot flow directly from behavior to behavior but must
flow indirectly through a means of delaying wavefronts and releasing them when needed in the
sequence. The addressable memory of Section 4.11 fulfills this requirement enabling the
sequential interpretation of dependency networks.

The other enabler of sequential interpretation is the sequence controller which realizes the
one at a time sequence of behaviors by determining each next behavior, retrieving its input
wavefronts from the memory flowing them through a specified interaction behavior and
returning the result wavefront to memory.

4.12.1. Reducing an interaction network expression
An interpreter behavior is referenced as a full portal behavior references (section 3.4.5.1).

A Journey Through Computatuion 2/21/25, 11:39 AM

95 Copyright © 2024 by Karl Fant

behaviorname(localityA localityB => localityC)

An interaction network expression is reduced to an interpretable sequence by transforming
dependency relations into referencable interpreter behaviors and by mapping all localities into
representations that fit into the wavefront memory. Finally, the behaviors needed to represent the
three dimensional network in a one dimensional sequence of behaviors are inserted into the
sequence.

The expression from the LFSR example of section 4.8 serves as the reduction example.

((=>) (B/{1 0}/ C/{1 0}/ D/{1 0}/ E/{1 0}/ F/{1 0}/ O/{1 0}/)
F<=pipe1(E<=pipe0(D<=pipe1(C

<=pipe0(B<=pipe0(pipe0(O
<=XOR(F XOR(XOR(B C) XOR(D E))))))))))

An interaction network is expressed in terms of syntax relations and name correspondence
relations. The first task is to re express all syntactic nesting relations as name correspondence
associations among full portal behavior references. The nameless nested localities of the portal
nesting relations are assigned names. The behavior references are related by name
correspondence as full portal behavior references referencing the newly assigned names and are
ordered to fulfill the dependency precedence relations of the interaction network expression.
4.12.1.1. The XOR full portal behavior references

XOR(D E => T3)
XOR(B C => T2)
XOR(T2 T3 -> T1)
XOR(F T1 => O)

XOR(D E => T3) and XOR(B C => T2) can be in any order but both must be before
XOR(T2 T3 -> T1) which must be before XOR(F T1 => O).

Some full portal references may need to be further reduced and substituted. Reduction
proceeds until all references refer to behaviors realized by the sequence controller referencing
localities that fit into the wavefront memory in an ordered sequence that fulfills the dependency
relations of the original dependency network expression.

For the purpose of reduction only the interaction dependency relations are considered. The
closure network is not regarded. The flow coordination of sequential interpretation is quite
different from the closure flow coordination of the interaction network (section 4.12.2.2).
4.12.1.2. The pipex behavior references

The localities for the locality nested pipe0 and pipe1 behaviors are already named except for
one which is assigned the name T0. The references are re expressed from locality nested
references to full portal references in column A of Figure 4.16.

The pipex behaviors do double duty in the interaction network by initializing localities as
well as moving wavefronts between localities. For the sequenced behaviors these duties are
separated out in column B of Figure 4.16 with separate behaviors. Behavior initx initializes
wavefronts in a locality and behavior move moves wavefronts from locality to locality.

A Journey Through Computatuion 2/21/25, 11:39 AM

96 Copyright © 2024 by Karl Fant

Figure 4.16. Composing the sequence of dependent operations.

These full portal reference behaviors are placed in an order that preserves the dependency
relations of the original interaction network expression. The initx behaviors can occur in any
order among themselves but must all occur before any interaction behaviors in the ordered list of
behaviors. In the LFSR network the first wavefronts flowing through the XORs will be the
initialized wavefronts not the first moved wavefronts. So the sequential order in column C of
Figure 4.16 is to first perform the initxs and then perform the XORs then perform the moves of
the wavefronts. The moves of the wavefronts are ordered such that each locality is read and
moved before the next behavior overwrites it.
4.12.1.3. One dimensional complexity

The interaction behaviors of the above list in column C of Figure 4.16 (excluding the init
behaviors) remain a valid dependency network expression. The behaviors can be shuffled into
any order and the name correspondence relations still construct the dependency network minus
the inits. For sequential interpretation, however, there are only a few specific orderings of
behaviors that will work and there are additional behaviors not derived from the dependency
network expression that have to be added for sequential interpretation to work.

An ordered list of behaviors to be interpreted one behavior at a time in sequence forms a one
dimensional behavior space that cannot, on its own, characterize the connectivity of a three
dimensional interaction network. Because of concurrency and conditionality the next behavior to
be realized cannot always be the next behavior in the one dimensional sequence. It is necessary
to conditionally and unconditionally jump around in the one dimensional sequence of behaviors.
The sequence controller must support the additional behaviors that enable conditional and
unconditional jumps within the one dimensional sequence.

A

pipex behaviors

pipe1(E => F)
pipe0(D => E)
pipe1(C => D)
pipe0(B => C)
pipe0(T0 => B)
pipe0(O => T0)

→

B

separation

init0(T0)
init0(B)
init0(C)
init1(D)
init0(E)
init1(F)
move(E => F)
move (D => E)
move (C => D)
move (B => C)
move (T0 => B)
move (O => T0)

→

C

integration

init0(T0)
init0(B)
init0(C)
init1(D)
init0(E)
init1(F)
XOR(D E => T3)
XOR(B C => T2)
XOR(T2 T3 => T1)
XOR(F T1 => O)
move(E => F)
move(D => E)
move(C => D)
move(B => C)
move(T0 => B)
move (O => T0)

A Journey Through Computatuion 2/21/25, 11:39 AM

97 Copyright © 2024 by Karl Fant

Each directive is assigned a unique name so it can be referenced. A name range with an
inherent order and easily determined nextness such as numeric is most convenient. In column A
of Figure 4.17 the assigned names are numeric and an unconditional jump is inserted as the last
directive closing the ring of dependency. The interpretation begins with the directive named 100,
progresses to directive named 116 then continues with the directive named 106 forming an
infinite loop of interpretation emulating the continual behavior and wavefront flow of the LFSR
ring network.

Figure 4.17. Forming and encoding the one dimensional sequence of behaviors.

The LFSR source network of Section 4.8.5 can be expressed by inserting a simple interface
protocol. In column B of Figure 4.17 a wait directive is inserted after the last XOR directive and
a move directive is inserted to move the wavefront in locality O to locality out.

Interpretation begins at 100 and halts at the wait directive with the XORs having delivered
their output wavefront to locality O. An external reference requests (closes with) the wavefront
of locality O. The wait falls through and the next behavior moves the wavefront in O to out. The
sequence of behaviors continues with the move behaviors moving the wavefronts presented to
the XORs from locality to locality. The wavefronts then flow through the XORs with their
output wavefront flowing to locality O. The interpretation then waits for the next request.

A

100 init0(T0)
101 init0(B)
102 init0(C)
103 init1(D)
104 init0(E)
105 init1(F)
106 XOR(D E => T3)
107 XOR(B C => T2)
108 XOR(T2 T3 -> T1)
109 XOR(F T1 => O)
112 move(E => F)
113 move(D => E)
114 move(C => D)
115 move(B => C)
116 move(T0 => B)
117 move(O => T0)
116 jump (106)

B

100 init0(T0)
101 init0(B)
102 init0(C)
103 init1(D)
104 init0(E)
105 init1(F)
106 XOR(D E => T3)
107 XOR(B C => T2)
108 XOR(T2 T3 => T1)
109 XOR(F T1 => O)
110 wait
111 move(O => out)
112 move(E => F)
113 move(D => E)
114 move(C => D)
115 move(B => C)
116 move(T0 => B)
117 move(O => T0)
118 jump(106)

C

100 2(20)
101 2(11)
102 2(12)
103 3(13)
104 2(14)
105 3(15)
106 4(13 14 => 23)
107 4(11 12 => 22)
108 4(22 23 => 21)
109 4(15 21 => 16)
110 6
111 5(16 => 24)
112 5(14 => 15)
113 5(13 => 14)
114 5(12 => 13)
115 5(11 => 12)
116 5(20 => 11)
117 5(16 => 20)
118 7(106)

A Journey Through Computatuion 2/21/25, 11:39 AM

98 Copyright © 2024 by Karl Fant

4.12.1.4. Mapping references to memory addresses and to behavior codes
The behavior names are translated into a code that the interpreter can understand to select the

appropriate behavior. Each locality name is assigned a numeric memory address name.

The ordered list of behaviors with the reassigned names is in column C of Figure 4.17. The
behavior code and the memory address names of each behavior are contrived to fit into a single
unit of wavefront memory that is referenced with one memory address forming an interpretation
behavior that a sequence controller can read and understand specifying a flow from wavefront
memory through the referenced behavior and back to wavefront memory. The entire expression
is now in terms of a sequence of full portal references to numerically coded behaviors realized by
the interpreter referencing numeric memory address locality names.

The incoherent transition behavior of a self determined interaction network becomes
temporally and spatially regimented behavior in its sequentially interpreted counterpart.

4.12.2. The sequence controller
The sequence controller of Figure 4.18 is a network of coupled and linked rings that reads

each behavior from memory and manages the flow of wavefronts from an addressable memory
through specified interaction behaviors whose results flow back to the memory. There is the
program counter ring network which determines from the current address and from the the type
of the previous behavior, branch or not branch, the next address from which to read a behavior.
There is the decoder ring network which reads and decodes the behavior dispatching the
behavior code and the memory addresses to the ALU/memory ring network. The ALU/memory
ring network accesses the input wavefronts from memory, flows them through the specified
behavior and places the result wavefront back in memory. There is also the branch ring coupled
through the ALU and the program counter which determines the conditional of a branch.

The sequence of behaviors for the interaction network being interpreted are placed in the
memory in numeric order. The initial wavefronts of localities are placed in their memory
locations. The program counter initializes the next behavior address to the first behavior to be
read, in this case 100. The address is passed to the decoder and the behavior is read, decoded and
realized. The sequence controller then cycles through the behaviors. The resulting sequence of
behaviors realizes the source interaction network constructing the network’s behavior extended
through time and memory.
4.12.2.1. The exposed binding portal

The sequential interpreter is not a completely self determined network that can explore its
environment entirely on its own. It has an exposed binding portal in that any program can be
loaded into its memory from an external environment. Once a program is loaded, however, it self
determinately realizes the program.

numeric locality names
B -> 11
C -> 12
D -> 13
E -> 14
F -> 15
O -> 16

T0 -> 20
T1 -> 21
T2 -> 22
T3 -> 23
out -> 24

behavior codes
init0 -> 2
init1 -> 3
XOR -> 4
move -> 5
wait -> 6
jump -> 7

A Journey Through Computatuion 2/21/25, 11:39 AM

99 Copyright © 2024 by Karl Fant

out1 addrout2 addrin addr
Register

BehA BehB BehC BehO

operation
determine

next
directive
address

directive
address

program
counter

ring

next
directive

directive
decode

decoder
ring

memory/alu
ring

branch
comparebranch

ringTrue
False

out1out2

datain

directive type

immediate

Register

wavefront
memorydirective

memory

address

dataout

in

Figure 4.18. The sequential interpreter and its linked rings.

A sequential controller however might be outfitted with imposition and sensor behaviors and
loaded with a never ending program that is essentially self determined and capable of
independently exploring its environment, a robot.
4.12.2.2. Sequential flow coordination

Sequential interpretation requires that each directive is completed with its asserted output
written to memory before the next sequential behavior is begun. Completeness of output ensures
the stable completeness of input presentation for subsequent behaviors. This is different from the
interaction network for which the completeness of output of a behavior ensures the completeness
of its own input. In both cases interaction behavior is coordinated in terms of completeness of
output assertion progressively accumulating to ensure completeness of input presentation.
4.12.2.3. Scalable generality

The sequence controller and addressable memory form a sequential interpreter, an
interaction network capable of interpretively realizing the behavior of any other interaction
network. Realizing every interaction network as a unique physical network is not practical and
does not scale. But being able to express any interaction network directly as a dependency
network, translate it to a sequential expression and then to realize the interaction network
expression dynamically constructed through time and memory with a simple sequential
interpreter that can be indefinitely replicated does scale.

The dynamic and conditionally varying construction of dependency relations through time
and memory provides a flexibility and generality of realizability not possible with statically
realized networks.
4.12.2.4. Expressive generality

Why express one of the multitudes of possible sequences when you can express the one
unique dependency expression that all the sequences must derive from and which you must
understand to express one of the seqeunces and have it mechanically translated, compiled, to an
appropriate sequential expression (section 1.1.1).
4.12.2.5. Again, nothing new or extrinsic

No new primitivity or extrinsic capability has been introduced. The addressable memory and
sequence controller are realized entirely in terms of the primitive behaviors of section 3.2.1 The
sufficiently expressive primitive behaviors have finally bootstrapped sequential interpretation.

A Journey Through Computatuion 2/21/25, 11:39 AM

100 Copyright © 2024 by Karl Fant

1. The author in collaboration with Igor Ilyukhin has implemented a RISC V 32IM as a structure of coupled
rings in terms of the primitive interaction behaviors of section 3.2.

The derivation rationale of the sequential interpreter did not appeal to a mathematician with
pencil and paper nor to the notion of algorithm. There was no appeal to Boolean logic, to timing
analysis or to a timing referent such as a clock. Sequential one at a time interpretive stepping was
not assumed a priori but emerged as a possibility of universal realizability with the emergence of
the addressable memory in which wavefronts could be stored and retrieved.

4.13. A quest fulfilled
The quest of section 1.8 is fulfilled journeying from the pure condition differentiation

expression of Chapter 2 through the pure association differentiation expressions of Chapter 3 to
the temporal differentiation expressions of Chapter 4 computational interaction with all
concurrent relations fully accounted in terms of differentness spontaneously and dependently
interacting and changing with primitive interaction behaviors (section 3.2) that reliably express
primitive concurrency behavior and that realize a most primitive sequential interpreter
bootstrapping sequential interpretation (section 1.8).

4.13.1. Counter example
Sequence control and Boolean logic are considered fundamental to computation.

Dependency flow computation presents a counter example expressing deterministic complex
computation containing no Boolean logic expression, no sequence control or any other form of
explicit control, possessing no stable samplable state and possessing no common behavioral
referent such as a clock or a mathematician. Furthermore, sequence control and Boolean logic
are derivable from dependency flow computation implying it to be the more fundamental
characterization.

4.13.2. Full circle
A self determined interaction network arises able to replicate itself and evolve into a complex

self determined interaction network that invents differentness interaction mapping with an
exposed binding portal, that becomes a controlling external environment using interaction as a
tool to ask questions and receive answers and that becomes fascinated with the limitations of the
exposed binding portal.

4.13.3. Still not done
There remains one final stage of the journey, a walk through the spectrum of differentiation

relating the dimensions of condition differentiation and association differentiation.

A Journey Through Computatuion 2/21/25, 11:39 AM

101 Copyright © 2024 by Karl Fant

Chapter 5:
The spectrum of Differentiation

5
Any interaction of differentness is represented as a coextensive collaboration between

condition differentness and association differentness. The spectrum of differentiation, Figure 5.1,
embodies this collaboration with pure condition differentiation at one end of the spectrum and
pure association differentiation at the other end with various proportions of collaboration in
between.

Pure Condition
Differentiation

Pure Association
Differentiation

D
N

neuron
networks

Cell
metabolism

Protein interaction
in cytoplasm

decimal
arithmetic

more condition differentiation
less association differentiation

less condition differentiation
more association differentiation

DNA
Boolean

logic
10130 possible

proteins
indefinitely extensible
association structure

Mixed
Differentiation

Figure 5.1. The spectrum of differentiation.

5.1. The collaboration
Different conditions are different within a same place of association. A same condition is

different within different places of association. A range of mutually exclusively different
conditions extends the expression of differentness of a same place of association. Different
places of association asserting the same range of different conditions extends the expression of
differentness of the same range of different conditions.

With decimal place value numbers, for instance there are 10 different numeral conditions 0,
1, 2, 3, 4, 5, 6, 7, 8 and 9. One differentness of place of association in a decimal place value
number can represent 10 different numeral conditions extending the range of differentness
expression of the one place by ten differentnesses. Four different places of association asserting
the same numeral condition, 3333, extends the range of differentness expression of the one
numeral condition by four differentnesses. Each numeral condition is different by virtue of its
differentness of place. Condition differentness and association differentness collaborate to
express a large range of mutually exclusive differentness.

With binary place value numbers each differentness of place of association is extended to two
differentnesses 0 and 1. Each place of association of a binary number can express only 0 or 1 so
it takes more places of association to express a comparable decimal number. Decimal number
1023 requires four decimal places while the comparable binary number 1111111111 requires 10
binary places. Two representations of a same differentness with different proportions of
condition differentiation and association differentiation.

Twenty six letter conditions asserted one at a time at different places of association relations
form words. Words associate to form sentences. Sentences association to form paragraphs and so
on. Japanese uses an enormous range of different symbol conditions asserted at different places
of association to form its words and sentences. Again different proportions of condition
differentness and association differentness to express comparable meaning differentness.

The spectrum of differentiation encompasses this proportionality of collaboration of mutual
extension between condition differentness and association differentness in the representation of
mutually exclusive differentnesses and their interactions providing a unifying foundation of
expressivity among what have been considered to be quite disparate forms of representing
differentness and the interaction of differentness.

A Journey Through Computatuion 2/21/25, 11:39 AM

102 Copyright © 2024 by Karl Fant

5.2. A walk along the spectrum
The collaboration is illustrated by walking one temporal instance of one specific interaction

of differentnesses along the spectrum with condition differentiation and association
differentiation collaborating in various proportion to represent the one specific interaction.

One differentness from the group of three mutually exclusive differentnesses named U, V, W
and one differentness from the group of three mutually exclusive differentnesses named X, Y, Z
associate and interact producing one of nine mutually exclusive differentnesses named A, B, C,
D, E, F, J, K, L. The example interaction is shown in Figure 5.2 as an interaction mapping table
and as a list of interaction dependency relations.

Figure 5.2. Example interaction.

The tradeoffs between the proportion of condition differentiation and association
differentiation are considered in terms of the example interaction at various locations along the
spectrum characterized in terms of the amount of condition differentiation available. The walk
begins at the pure condition end of the spectrum with sufficient condition differentiation to
express the example interaction at a single place of common association and continues by
constraining condition differentiation until there is only one available differentness condition at
the pure association end of the spectrum.

5.3. With fifteen available differentness conditions
With fifteen available differentness conditions named A, B, C, D, E, F, J, K, L, U, V, W, X,

Y, Z the example interaction can be represented with pure condition differentiation (Chapter 2
for a more complex example of interaction expressed purely in terms of condition differentiation)
at a single place of common association as illustrated with the bag in Figure 5.3. The bag begins
empty. One of conditions X, Y, Z and one of conditions U, V, W enter the bag and interact with
the interaction propensities expressed in the mapping table producing one of conditions A, B, C,
D, E, F, J, K, L. The result condition exits the bag leaving the bag empty bounding one temporal
instance of one specific interaction of differentness. The interaction mapping is the same as
Figure 5.2.

X
Y
Z

mapping
table

U
A
D
J

V
B
E
K

W
C
F
L

specifies
interaction→
dependencies

 [W Z] => L
 [V Z] => K
 [U Z] => J
 [W Y] => F
 [V Y] => E
 [U Y] => D
 [W X] => C
 [V X] => B
 [U X] => A

A Journey Through Computatuion 2/21/25, 11:39 AM

103 Copyright © 2024 by Karl Fant

[W,Z] -> L
[V,Z] -> K
[U,Z] -> J
[W,Y] -> F
[V,Y] -> E
[U,Y] -> D
[W,X] -> C
[V,X] -> B
[U,X] -> A

V
Z

L

C

KJ
FED

BA
U V W

X
Y
Z

Figure 5.3. Fifteen differentness conditions, 1 shaking bag.

With only one place of common association and with associations inside the bag being
indeterminate there is no differentiation in terms of association. The differentnesses and their
interaction is expressed purely in terms of condition differentnesses and their interaction
propensities mapping input differentness conditions to output differentness conditions.

The interaction dependency expression as relations of names of conditions:

 (L<=[W Z]
 K<=[V Z]
 J<=[U Z]
 F<=[W Y]
 E<=[V Y]
 D<=[U Y]
 C<=[W X]
 B<=[V X]
 A<=[U X])

There is no referencing or binding in a pure value expression. Conditions are sufficiently
differentiating. They just show up and interact.

All possible interaction mappings can be expressed by specifying the interaction propensities
in the mapping table. For instance:

The interaction is specified entirely in terms of condition differentiation.

5.4. Constrained to nine available differentness conditions
Nine conditions are sufficient to represent the output differentnesses but six of the conditions

must also be used to represent the input differentnesses.

X
Y
Z

mapping
table

U
B
D
C

V
A
B
E

W
D
A
B

specifies
interaction→
dependencies

W Z => B
V Z => E
U Z => C
W Y => A
V Y => B
U Y => D
W X => D
V X => A
U X => B

A Journey Through Computatuion 2/21/25, 11:39 AM

104 Copyright © 2024 by Karl Fant

Figure 5.4. Interaction mapping with nine available differentness conditions.

Input differentness conditions must be differentiated from the identical output differentness
conditions. This is represented with an association interaction behavior that isolates input
conditions from identical output conditions establishing isolated localities of differentness for its
inputs and its output, see Figure 3.4 and section 3.1.3.

An association interaction behavior, as explained in Section 3.1.6, continually receiving input
interaction conditions and continually asserting an output interaction condition requires a
condition named N explicitly representing absence of interaction condition as well as the
monotonic transitioning between interaction condition completeness and completely N including
the ability of the interaction association behavior to recognize transitions of input to interaction
condition completeness and to completely N. The condition named N is included as integral to
this discussion and will be explicitly referenced in the interaction behavior mapping tables and in
the interaction dependency expressions.

Interaction no longer occurs in terms of freely associating conditions but now occurs inside
the association interaction behavior in terms of directly associated conditions. The interaction is
characterized by the mapping table on the right of Figure 5.5 which includes the nine
differentness conditions plus N with the – indicating no transition. The interaction mapping
behavior transitions its asserted output to an interaction differentness condition only when both
presented inputs are interaction differentness conditions (interaction differentness completeness)
and transitioning its asserted output condition to N only when both presented inputs are
differentness condition N (completely N) representing emptiness of interaction differentnesses
(Section 3.1.6). When the presented input is not complete, i.e. there is one N and one interaction
differentness condition presented, the interaction behavior does not transition its asserted output
condition (section 3.2).

T/
S/ out/

L

C

KJ
FED

BA
A B C

D
E
F

S/

T/ out/ out/
L

C

KJ
FED

BA
A B C

D
E
F

T/
–

–
–

––– N

N

N

S/9
interaction
conditions

interaction
behavior
mapping

Figure 5.5. Nine differentness conditions with one association interaction behavior.

D
E
F

mapping
table

A
A
D
J

B
B
E
K

C
C
F
L

specifies
interaction→
dependencies

C F => L
B F => K
A F => J
C E => F
B E => E
A E => D
C D => C
B D => B
A D => A

A Journey Through Computatuion 2/21/25, 11:39 AM

105 Copyright © 2024 by Karl Fant

The interaction behavior forms a simplest of interaction networks. Each differentness now is
expressed as a differentness of place of association combined with a differentness of condition.
Locality S can assert three interaction differentnesses S/C, S/B, S/A and S/N. Locality T can
assert three interaction differentnesses T/F, T/E, T/D and T/N. Locality out can assert
differentnesses nine interaction differentnesses out/L, out/K, out/J, out/F, out/E, out/D, out/C,
out/B, out/A and out/N. Remember that N is not an interaction differentness. The differentnesses
asserted with identical conditions at different places of association are different by virtue of the
differentness of place of association. T/F and out/F are different by virtue of the associational
differentness of T and out.

An interaction begins empty with S/N T/N and out/N. Inputs S/ and T/ transition to
interaction conditions and out/ transitions to the determined interaction condition. S/ and T/
transition back to N, and out/ transitions to N leaving the interaction behavior empty bounding
one temporal instance of one specific interaction of differentness.

The interaction dependency expression as relations of names of conditions and names of
places of association:

(9condexamp(S/{C B A N}/ T/{F E D N} => out/{L K J F E D C B A N})
out/{L<=[S/C T/F]
 K<=[S/B T/F]
 J<=[S/A T/F]
 F<=[S/C T/E]
 E<=[S/B T/E]
 D<=[S/A T/E]
 C<=[S/C T/D]
 B<=[S/B T/D]
 A<=[S/A T/D]
 N<=[S/N T/N] })

All possible interaction mappings can be expressed by arranging the output differentnesses in
the mapping table. The burden of representing differentiation and interaction is now shared
between condition differentiation and association differentiation.

5.5. Constrained to six available differentness conditions
Six differentness conditions named A, B, C, D, E, F are still sufficient to represent the input

differentnesses but six differentness conditions are not sufficient to represent the nine output
conditions so the output differentness out must now be represented as two associated output
conditions asserted by two association interaction behaviors asserting locality out with two
component localities Y and Z. Input locality S/ can assert one of the interaction differentness
conditions A or B or C. Input locality T/ can assert one of the interaction differentness
conditions D or E or F. The example interaction mapping is shown in Figure 5.6.

A Journey Through Computatuion 2/21/25, 11:39 AM

106 Copyright © 2024 by Karl Fant

The specific interaction mapping.

Figure 5.6. Interaction mapping with six available differentness conditions.

The interaction in Figure 5.7 is now expressed as a network of two association interaction
behaviors asserting the two output conditions. The input conditions asserted by S and T are
fanned out to the two interaction behaviors. The interaction mapping 6cond1 asserts out/Y and
the interaction mapping 6cond2 asserts out/Z. The availability of all possible interaction
mappings means that any arbitrary mapping to the output can be represented.

An interaction begins empty with S/N T/N and out/Y/N and out/Z/N. inputs S/ and T/
transition to interaction differentness conditions and out/Y and out/Z transition to the determined
interaction differentness conditions. S/ and T/ transition back to N, and out/Y and out/Z
transition to N leaving the interaction network empty bounding one temporal instance of one
specific interaction of differentness.

D,B

C,A

C,BB,B
F,AE,AD,A

B,AA,A
A B C

D
E
F

S/

T/ out/Y/,out/Z/

out/Z/
T/
S/

out/Y/

O/
B

A

BB
AAA

AA
A B C

D
E
F

N/
–

–
–

––– N

N

N

M/

O/
D

C

CB
FED

BA
A B C

D
E
F

N/
–

–
–

––– N

N

N

M/6
interaction
conditions

6cond1
mapping

6cond2
mapping

6cond1

6cond2

Figure 5.7. Six differentness conditions with two association interaction behaviors.

The dependency expressions for the component association interaction behaviors and for the
network as relations of names of conditions and names of places of association:

T/
D
E
F

mapping
table

A
A,A
D,A
B,B

S/
B

B,A
E,A
C,B

C
C,A
F,A
D,B

out/Y, out/Z

specified interaction relations
S/A T/D => out/Y/A out/Z/A
S/B T/D => out/Y/B out/Z/A
S/C T/D => out/Y/C out/Z/A
S/A T/E => out/Y/D out/Z/A
S/B T/E => out/Y/E out/Z/A
S/C T/E => out/Y/F out/Z/A
S/A T/F => out/Y/B out/Z/B
S/B T/F => out/Y/C out/Z/B
S/C T/F => out/Y/D out/Z/B

A Journey Through Computatuion 2/21/25, 11:39 AM

107 Copyright © 2024 by Karl Fant

(6cond1(M/{C B A N} N/{F E D N} => O/{F E D C B A N})
O/{A<=[M/A N/A]
 B<={[M/B N/D] [M/A N/F] }
 C<={[M/C N/D] [M/B N/F] }
 D<={[M/A N/E] [M/C N/F] }
 E<=[M/B N/E]
 F<=[M/C N/E]
 N<=[M/N N/N] })

(6cond2(M/{C B A N} N/{F E D N} => O/{F E D C B A N})
O/{A<={[M/C N/D] [M/B N/D] [M/A N/D]

 [M/C N/E] [M/B N/E] [M/A N/E] }
 B<={[M/C N/F [M/B N/F] [M/A N/F]}
 N<=[M/N N/N] })

(6condexamp(S/{C B A N} T/{F E D N}=> out/[Z Y]/{F E D C B A N})
6cond1(S T => out/Y)
6cond2(S T => out/Z))

Expressions 6cond1 and 6cond2 express the mappings of the interaction behaviors. The
expression 6condexamp referencing 6cond1 and 6cond2 expresses how the mappings
dependently associate as a network to realize the interaction of S/ and T/ to out/[Y Z]/. The
network as a whole becomes the element of interaction that is singularly referencable from
interaction to interaction

All possible interaction mappings can be expressed by arranging the output differentnesses in
the mapping tables of the interaction behaviors to represent any desired mapping of combined
output conditions.

There is less condition differentiation and more association differentiation.

5.6. Constrained to three available differentness conditions
There are two ways to constrain the expression of condition differentiation. First, the number

of available conditions can be limited with the availability of association interaction behaviors
capable of representing all the possible interaction mappings. Second, the available interaction
mappings can also be limited. These two constraints can be conveniently illustrated and
discussed in the context of three available interaction differentness conditions

5.6.1. First: all possible interaction mappings available
Three interaction differentness conditions named A, B, C are still sufficient to represent each

input differentnesses. The nine output differentnesses can still be represented with two
association interaction behaviors asserting locality out as two component localities Y and Z
which must now be associatively ordered to differentiate out/Y/A out/Z/B from out/Y/B outZ/
A. With six interaction differentness conditions the Y and Z outputs did not necessarily have to
be ordered to distinguish the nine output differentnesses. Input locality S/ asserts one of the
interaction differentness conditions A or B or C. Input locality T/ asserts one of the interaction
differentness conditions A or B or C. The example interaction mapping is shown in Figure 5.8.

A Journey Through Computatuion 2/21/25, 11:39 AM

108 Copyright © 2024 by Karl Fant

Figure 5.8. Interaction mapping with three available differentness conditions.

The interaction in Figure 5.9 is still expressed as a network of two association interaction
behaviors asserting the two output conditions. The input conditions asserted by S and T are
fanned out to the two interaction behaviors. The interaction mapping 3cond1 asserts out/Y and
the interaction mapping 3cond2 asserts out/Z. The availability of all possible interaction
mappings means that any arbitrary mapping to the output can be represented.

An interaction begins empty with S/N T/N and out/Y/N and out/Z/N. inputs S/ and T/
transition to interaction differentness conditions and out/Y/ and out/Z/ transition to the
determined interaction differentness conditions. S/ and T/ transition back to N, and out/Y/ and
out/Z/ transition to N leaving the interaction network empty bounding one temporal instance of
one specific interaction of differentness.

out/Z/
T/
S/

out/Y/

C,C

A,C

C,BC,A
B,CB,BB,A

A,BA,A
A B C

A
B
C

S/

T/ out/Y/,out/Z/

3
interaction
conditions

O/
C

C

BA
CBA

BA
A B C

A
B
C

N/
–

–
–

––– N

N

N

M/

O/
C

A

CC
BBB

AA
A B C

A
B
C

N/
–

–
–

––– N

N

N

M/3cond1
mapping

3cond2
mapping

3cond1

3cond2

Figure 5.9. Three differentness conditions with two association interaction behaviors.

The dependency expressions for the component association interaction behaviors and for the
network as relations of names of conditions and names of places of association.

T/
A
B
C

mapping
table

A
A,A
B,A
C,A

S/
B

A,B
B,B
C,B

C
A,C
B,C
C,C

out/Y/, out/Z/

specified interaction relations
S/A T/A => out/Y/A out/Z/A
S/B T/A => out/Y/A out/Z/B
S/C T/A => out/Y/A out/Z/C
S/A T/B => out/Y/B out/Z/A
S/B T/B => out/Y/B out/Z/B
S/C T/B => out/Y/B out/Z/C
S/A T/C => out/Y/C out/Z/A
S/B T/C => out/Y/C out/Z/B
S/C T/C => out/Y/C out/Z/C

A Journey Through Computatuion 2/21/25, 11:39 AM

109 Copyright © 2024 by Karl Fant

(3cond1(M/{C B A N} N/{C B A N} => O/{C B A N})
O/{A<={[M/A N/A] [M/A N/B] [M/A N/C]}
 B<={[M/B N/A] [M/B N/B] [M/B N/C]}
 C<={[M/C N/A] [M/C N/B] [M/C N/C]}
 N<=[M/N N/N] })

(3cond2(M/{C B A N} N/{C B A N} => O/{C B A N})
O/{A<={[M/A N/A] [M/B N/A] [M/C N/A]}
 B<={[M/A N/B] [M/B N/B] [M/C N/B]}
 C<={[M/A N/C] [M/B N/C] [M/C N/C]}}
 N<=[M/N N/N] })

(3condexamp1(S/{C B A N} T/{C B A N}=> out/[Z Y]/{C B A N})
3cond1(S T => out/Y)
3cond2(S T => out/Z))

Expressions 3cond1 and 3cond2 express the mappings of the interaction behaviors that
realize the interaction mapping. The expression 3condexamp referencing 3cond1 and 3cond2
expresses how the mappings dependently associate to realize the interaction of S/ and T/ to out/
[Y Z]/.

Again, all possible interaction mappings can be expressed by arranging the output
differentnesses in the mapping tables of the association interaction behaviors to represent any
desired mapping to the associated output conditions.

There is less condition differentiation and more association differentiation in that now the
association differentness of S and T are necessary to differentiate the presented inputs and out/X
and out/Y must be associationaly ordered to differentiate out/Y/A out/Z/B from out/Y/B outZ/
A.

5.6.2. Second: only five interaction mappings available
Condition differentiation is further constrained by limiting the available association behavior

interaction mappings to only five given mappings that cannot be rearranged. The example
interaction mapping remains identical to Figure 5.8 but realizing the mapping behavior changes
dramatically.

To this point in the walk along the spectrum the ability to map any presented input to any
desired output has been supported by the availability of black boxes of all possible association
behavior interaction mappings of the available differentness conditions. How the recognition of
the presented input and the mapping to assertion of the corresponding output happens within the
black box of the association interaction behavior has not been expressed. With the limitation of
interaction mappings the internal mechanics of this black box mapping are no longer universally
available for all possible mappings but only for the limited mappings. Now the generality of
mapping behavior must be explicitly expressed in terms of association relations among the
limited available mappings.
5.6.2.1. Recognition of presented input.

The recognition of presented input differentness is accomplished with two association
behavior mappings, Equality and Rotate shown in Figure 5.10.

A Journey Through Computatuion 2/21/25, 11:39 AM

110 Copyright © 2024 by Karl Fant

The Equality behavior expresses the recognition of a specific presentation of interaction
differentness conditions, CC. If the input to Equality is CC the behavior transitions its output to
condition C indicating equality success. For any other combination of presented interaction
differentness conditions it transitions its output to condition A indicating equality failure.

The Rotate behavior rotates a presented input interaction differentness condition to a next
interaction differentness condition in order. A sequence of rotates will rotate a presented input
interaction differentness condition through all of the possible interaction differentness conditions.
One of these rotations will output the specific equality interaction differentness condition C.

Condition N plays directly through the Rotate behavior and condition NN plays directly
through the Equality behavior.

C

A

AA
AAA

AA
A B C

A
B
C

M/

N/ O/

Equality

A
C
BA

B
C

N/

Rotate

–

–
–

––– N

N

N NN

O/

Eq(M N => O) Ro(N => O)
E R

Figure 5.10. The interaction mappings for equality and rotate behaviors.

The interaction mapping expressions.

(Eq(M/{C B A N} N/{C B A N} => O/{C B A N})
O/{A<={[M/A N/A] [M/A N/B] [M/A N/C]
 [M/B N/A] [M/B N/B] [M/B N/C]
 [M/C N/A] [M/C N/B] [M/C N/C]}
 C<= [M/C N/C]
 N<=[M/N N/N] })

(Ro(N/{C B A N} => O/{C B A N})
O/{A<= N/C
 B<=N/A]
 C<=N/B]
 N<=N/N)

5.6.2.2. The cross association recognition network
The presented input condition can be recognized by how many rotations it takes to rotate the

input condition to the specific equality condition C. Condition C after two rotations means that
the input condition was A. Condition C after one rotation means that the input condition was B.
Condition C after no rotation means that the input condition was C. For each input each rotated
condition will be asserted at a different place of association. One of the places will assert C

A Journey Through Computatuion 2/21/25, 11:39 AM

111 Copyright © 2024 by Karl Fant

indicating the presented input condition. The rotation places of association are cross associated.
In the cross association of the rotation places there will be one occurrence of CC identifying the
presented input conditions. One Equality behavior in a rank of Equality behaviors will
recognize the one occurrence of CC and transition its output to C. The remaining eight Equality
behaviors will transition their output to A indicating recognition failure. Presentation S/N and T/
N is recognized with all nine Equality behaviors assserting N.

The cross association recognition portion of the interaction network is illustrated in Figure
5.11. An interaction begins with an empty network with S/N and T/N presented as input and all
of the association interaction behaviors asserting N. S/A and T/B are presented to the network
input. The three conditions are represented in color showing the flow of presented conditions
through the rotations, into the rank of equality behaviors and to the assertion of recognition
condition C. The specific presentation of conditions is recognized at a particular place of
association in the network. After the interaction the input presentation transitions to S/N and T/N
and the network empties of interaction conditions.

Only one equality
behavior will be
presented with
CC and assert C.

All the others will
assert A.

The single C
assertion will
determine the
output.

[S/A T/A]
RECOGNIZED

INPUT

S/

A

B

C

D

E

F

G

H

I

cross/

T/

[S/A T/B]

[S/A T/C]

[S/B T/A]

[S/B T/B]

[S/B T/C]

[S/C T/A]

[S/C T/B]

[S/C T/C]

E

RR

RR

E

E

E

E

E

E

E

E

A
B
C

Figure 5.11. Cross association recognition network for example interaction with three
differentness conditions and limited behavior mappings.

The cross association recognition portion of the interaction dependency expression.

A Journey Through Computatuion 2/21/25, 11:39 AM

112 Copyright © 2024 by Karl Fant

(3condexamp2(S/{C B A N} T/{C B A N} => OUT/[Y Z]/{C B A N})
(cross/[A B C D E F G H I]/{C B A N})

/* cross association recognition. Only one transitions to C the other 8 transition to A.*/
/* When both inputs are N all of the equality behaviors will transition to N. */

 cross/[A<=Eq(Ro(Ro(S)) Ro(Ro(T))) /* reocgnize S/A T/A */
 B<=Eq(Ro(Ro(S)) Ro(T)) /* reocgnize S/A T/B */
 C<=Eq(Ro(Ro(S)) T) /* reocgnize S/A T/C */
 D<=Eq(Ro(S) Ro(Ro(T))) /* reocgnize S/B T/A */
 E<=Eq(Ro(S) Ro(T)) /* reocgnize S/B T/B */
 F<=Eq(Ro(S) T) /* reocgnize S/B T/C */
 G<=Eq(S Ro(Ro(T))) /* reocgnize S/C T/A */
 H<=Eq(S Ro (T)) /* reocgnize S/C T/B */
 I<=Eq(S T)]… /* reocgnize S/C T/C */……)

5.6.2.3. Assertion of the mapped output
The rank of equality behaviors outputs one C and eight As. The task is to have the one C

condition assert the appropriate output condition by prioritizing the flow of Bs and Cs over the
flow of As to the output assertion. This is accomplished with two Assert behaviors and one
Priority behavior, shown in Figure 5.12.

If the AssertB behavior is presented with condition C it will output condition B but if
presented with condition A will output condition A.

If the AssertA behavior is presented with condition C it will output condition A and if
presented with condition A will output condition A. If the one C condition is converted to A
there are no Bs or Cs converging to the output. There are only As converging and the output will
be A.

Condition C does not need to be transitioned into condition C so there is no AssertC
behavior.

The priority behavior will pass the highest priority condition with A the lowest priority B
the middle and C the highest priority. A network of priority behaviors will pass the highest
priority condition presented to the network.

M/

O/

Assert A Priority

C

C

CC
CBB

BA
A B C

A
B
C

N/
–

–
–

––– N

N

NN
B
AA

C
N

N/ O/
N
A
AA

C
N

N/ O/

Assert B
Ba(N => O) Pr(M N => O)Aa(N => O)

PB A

Figure 5.12. Output convergence behaviors.

A Journey Through Computatuion 2/21/25, 11:39 AM

113 Copyright © 2024 by Karl Fant

The interaction mapping expressions:

(Pr(M/{C B A N} N/{C B A N}/ => O/{C B A N})
O/{A<=[M/A N/A]
 B<={[M/A N/B] [M/B N/A] [M/B N/B]}
 C<={[M/C N/A] [M/C N/B] [M/C N/C] [M/A N/C] [M/B N/C]}
 N<=[M/N N/N] })

(Aa(N/{C B A N} => O/{C B A N})
O/{A<= {N/A N/C}
 N<=N/N })

(Ba(N/{C B AN} => O/{C B A N})
O/{A<= N/A
 B<=N/C
 N<=N/N })

5.6.2.4. The convergence assertion network
The one condition C of the cross association recognition determines the output conditions.

Each recognized input that specifies output condition B the recognizing C condition flows
through an AssertB behavior. Each recognized input that specifies output condition A the
recognizing C condition flows through an AssertA behavior. Each recognized input that
specifies output condition C is not transitioned because the recognition success condition is
already C. The result of the assert behaviors is eight A conditions and one asserted output
condition which may also be condition A. If all nine recognition conditions are condition N then
out/Y will be condition N.

In Figure 5.13 all nine input recognitions flowing through locality cross/ are presented to a
priority network that converges the flows to the assertion of out/Y. The three condition are
represented in color showing the flow of presented conditions through the assertion and priority
behaviors to out/Y.

B

A

C out/Y

assert output
condition collect output condition to output

all to
out/Y/B

all to
out/Y/C

all to
out/Y/A

P

A
A

A

B
B

B
P

P P

P
P

P
P

cross/B/
cross/E/
cross/H/
cross/C/
cross/F/
cross/I/
cross/A/
cross/D/
cross/G/

A
B
C

Figure 5.13. Three condition output convergence network to assert out/Y.

Assertion convergence dependency expression:

A Journey Through Computatuion 2/21/25, 11:39 AM

114 Copyright © 2024 by Karl Fant

out/Y<= Pr(Pr(Pr(Pr(Ba(cross/B) Ba(cross/E)) Ba(cross/H))
 Pr(Pr(cross/C cross/F) cross/I))
 Pr(Pr(Aa(cross/A) Aa(cross/D)) Aa(cross/G)))

5.6.2.5. The complete network realizing the example interaction.
Figure 5.14 shows the association network expressing the example interaction with three

differentness conditions A, B and C and the set of five interaction behaviors Ro(…), Eq(…),
Ba(…), Aa(…) and Pr(…) .

An interaction begins with the network empty of interaction condition with S/N T/N, all the
internal behaviors asserting N and out/Y/N and out/Z/N. The inputs transition to S/B and T/C.
The three condition are represented in color showing the flow of presented conditions through
the rotations, into the rank of equality behaviors and through the convergence network to out/Y
and out/Z. S/ and T/ transition to N, all internal behaviors transition to N and out/Y and out/Z
transitions to N leaving the interaction network empty with completely N bounding one temporal
instance of one specific interaction of differentness.

The flow through the network is a collaboration between differentness of condition,
differentness of interaction behavior and differentness of place of association in the network.

A,C

A,A

C,BC,A
B,CA,BB,A

B,BC,C
A B C

A
B
C

T/ out/Y,out/Z

S/

B

A

C out/Y

B

A

C out/Z

assert output
condition collect output condition to output

B
B

B
B

B

A
A

A

A
A

A

B
P

P

PP

P
P

P
P

P
P

P
P

P
P

P
P

AA=>C C

the mapping

AB=>BA

AC=>CA

BA=>BB

B B=>AB

BC=>CB

CA=>AA

CB=>BC

CC=>AC

ST=>YZ

S/

A

B

C

D

E

F

G

H

I

cross/

T/

E

RR

RR

E

E

E

E

E

E

E

E

A
B
C

Figure 5.14. Three differentness conditions with five interaction mappings realizing the
example interaction with 41 behaviors.

A Journey Through Computatuion 2/21/25, 11:39 AM

115 Copyright © 2024 by Karl Fant

The complete interaction network expression.

(3condexamp2(S/{C B A N} T/{C B A N} => OUT/[Y Z]/{C B A N})
(cross/{A B C D E F G H I}/{C B A N})

/* cross association recognition. Only one transitions to C the other 8 transition to A.*/
/* When both inputs are N all of the equality behaviors will transition to N. */

 cross/[A<=Eq(Ro(Ro(S)) Ro(Ro(T))) /* reocgnize S/A T/A */
 B<=Eq(Ro(Ro(S)) Ro(T)) /* reocgnize S/A T/B */
 C<=Eq(Ro(Ro(S)) T) /* reocgnize S/A T/C */
 D<=Eq(Ro(S) Ro(Ro(T))) /* reocgnize S/B T/A */
 E<=Eq(Ro(S) Ro(T)) /* reocgnize S/B T/B */
 F<=Eq(Ro(S) T) /* reocgnize S/B T/C */
 G<=Eq(S Ro(Ro(T))) /* reocgnize S/C T/A */
 H<=Eq(S Ro (T)) /* reocgnize S/C T/B */
 I<=Eq(S T)]… /* reocgnize S/C T/C */…

/* The convergence to out/Y */
out/Y<= Pr(Pr(Pr(Pr(Ba(cross/B) Ba(cross/E)) Ba(cross/H)) /* assert Y/B */

 Pr(Pr(cross/C cross/F) cross/I)) /* assert Y/C */
 Pr(Pr(Aa(cross/A) Aa(cross/D)) Aa(cross/G))) /* assert Y/A */

/* The convergence to out/Z */
out/Z<= Pr(Pr(Pr(Pr(Ba(cross/D) Ba(cross/E)) Ba(cross/F)) /* assert Z/B */

 Pr(Pr(cross/A cross/H) cross/I)) /* assert Z/C */
 Pr(Pr(Aa(cross/B) Aa(cross/C)) Aa(cross/G))) /* assert Z/A */)

All possible interaction mappings are now expressed by restructuring the network in terms of
the limited mappings. There is less condition differentiation and considerably more association
differentiation.

5.7. Constrained to two available differentness conditions
Constrained to two available interaction differentness conditions named A and B the inputs

with three differentnesses and the output with nine differentnesses have to be represented with
two interaction differentness conditions and four interaction differentness conditions respectively
as shown in Figure 5.15.

A Journey Through Computatuion 2/21/25, 11:39 AM

116 Copyright © 2024 by Karl Fant

The interaction mapping.

Figure 5.15. Interaction mapping with two available differentness conditions.

5.7.1. Two differentness condition interaction behavior mappings
With only two interaction differentness conditions B becomes the Equality condition and

AssertB is no longer needed. The limited interaction mappings become the four association
interaction behaviors in Figure 5.16.

M M

BA
AA

A B
A
BN O

Equality

A
BA

BN

Rotate

–
–

–– N

N

N NN
O O

Priority

BB
BA

A B
A
BN

–
–

–– N

N

N

Assert A

N
A
AA

B
N

N O

Eq(M N => O) Ro(N => O) Aa(N => O) Pr(M N => O)
E R A P

Figure 5.16. Two differentness condition association interaction behaviors.

The component behavior expressions:

(Eq(M/{B A N} N/{B A N} => O/{B A N})
O/{A<={[M/A N/A] [M/A N/B] [M/B N/A]}
 B<= [M/B N/B]
 N<=[M/N N/N] })

 T/Y, T/Z

specified interaction relations
S/Y/A S/Z/A T/Y/A T/Z/A => out/Y/A out/Z/A out/Y/A out/Z/A
S/Y/A S/Z/B T/Y/A T/Z/A => out/Y/A out/Z/A out/Y/A out/Z/B
S/Y/B S/Z/A T/Y/A T/Z/A => out/Y/A out/Z/A out/Y/B out/Z/A
S/Y/A S/Z/A T/Y/A T/Z/B => out/Y/A out/Z/A out/Y/B out/Z/B
S/Y/A S/Z/B T/Y/A T/Z/B => out/Y/A out/Z/B out/Y/A out/Z/A
S/Y/B S/Z/A T/Y/A T/Z/B => out/Y/A out/Z/B out/Y/A out/Z/B
S/Y/A S/Z/A T/Y/B T/Z/A => out/Y/A out/Z/B out/Y/B out/Z/A
S/Y/A S/Z/B T/Y/B T/Z/A => out/Y/A out/Z/B out/Y/B out/Z/B
S/Y/B S/Z/A T/Y/B T/Z/A => out/Y/B out/Z/A out/Y/A out/Z/A

A,A
A,B
B,A

mapping
table

A,A
A,A,A,A
A,A,B,B
A,B,B,A

S/Y, S/Z
A,B

A,A,A,B
A,B,A,A
A,B,B,B

B,A
A,A,B,A
A,B,A,B
B,A,A,A

out/W, out/X, out/Y/, out/Z/

A Journey Through Computatuion 2/21/25, 11:39 AM

117 Copyright © 2024 by Karl Fant

(Ro(N/{B A N} => O/{B A N})
O/{A<= N/B
 B<=N/A
 N<=N/N })

(Aa(N/{B A N} => O/{B A N})
O/{A<= {N/A N/B}
 N<=N/N })

(Pr(M/{B A N} N/{B A N}/ => O/{B A N})
O/{A<=[M/A N/A]
 B<= {[M/A N/B] [M/B N/A] [M/B N/B]}
 N<=[M/N N/N] })

5.7.2. Recognition of presented input
The differentness localities S and T are each represented as two places of association S/Y/, S/

Z/ and T/Y/, T/Z/ extending the two condition differentnesses to cover the three input interaction
differentnesses. With the input differentnesses represented with two localities two stages of
cross association recognition are required. In the left half of Figure 5.17 each input locality is
expanded with rotate behavior presented to a rank of three equality behaviors only one of which
will assert B and the rest will assert A. The two resulting localities of asserted conditions are then
cross associated and only one cross association will be the specific recognition presentation of
BB. One of the rank of equality behaviors will recognize the one cross association presenting
BB asserting its output condition B indicating recognition success with the other eight equality
behaviors assert output condition A indicating recognition failure.

A Journey Through Computatuion 2/21/25, 11:39 AM

118 Copyright © 2024 by Karl Fant

S/Y
S/Z

T/Y
T/Z

[A A A A]

Cross association search

Recognized
input

Recognized
input

in each equality rank
only one equality
behavior will be
presented with BB
and assert B.

All the others will
assert A.

The single B
assertion will
determine the
output.

A

B

C

D

E

F

G

H

I

R ER

R
R

E

E

E

E

E

E

E

E

E

E

E

E

E

E

cross/

[A A]

[A B]

[B A]

S/Y S/Z

T/Y T/Z
[A A]

[A B]

[B A]

Recognized input

[A A A B]

[A A B A]

[A B A A]

[A B A B]

[A B B A]

[B A A A]

[B A A B]

[B A B A]

[S/Y/ S/Z/ T/Y/ T/Z/]
A
B

Figure 5.17. Cross association recognition network for example interaction with two
differentness conditions.

The recognition portion of the interaction expression:

A Journey Through Computatuion 2/21/25, 11:39 AM

119 Copyright © 2024 by Karl Fant

(2condexamp(S/[Y Z]/{B A N} T/[Y Z]/{B A N} => OUT/[W X Y Z]/{B A N})
(cross/[A B C D E F G H I]/{B A N} Scross/[A B C]/{B A N}
 Tcross/[A B C]/{B A N})
 Scross/[A<=Eq(Ro(S/Y) Ro(S/Z)) /* reocgnize S/Y/A S/Z/A */

 B<=Eq(Ro(S/Y) S/Z) /* reocgnize S/Y/A S/Z/B */
 C<=Eq(S/Y Ro(S/Z))] /* reocgnize S/Y/B S/Z/A */

 Tcross/[A<=Eq(Ro(T/Y) Ro(T/Z)) /* reocgnize T/Y/A T/Z/A */
 B<=Eq(Ro(T/Y) T/Z) /* reocgnize T/Y/A T/Z/B */
 C<=Eq(T/Y Ro(T/Z))] /* reocgnize T/Y/B T/Z/A */

/* cross association recognition. Only one transitions to B the other 8 transition to A.*/
/* When the input is all N all of Scross, all of Tcross and all of cross transition to N */
 cross/[A<=E(Scross/A Tcross/A) /* reocgnize S/Y/A S/Z/A T/Y/A T/Z/A */

 B<=Eq(Scross/A Tcross/B) /* reocgnize S/Y/A S/Z/A T/Y/A T/Z/B */
 C<=Eq(Scross/A Tcross/C) /* reocgnize S/Y/A S/Z/A T/Y/B T/Z/A */
 D<=Eq(Scross/B Tcross/A) /* reocgnize S/Y/A S/Z/B T/Y/A T/Z/A */
 E<=Eq(Scross/B Tcross/B) /* reocgnize S/Y/A S/Z/B T/Y/A T/Z/B */
 F<=Eq(Scross/B Tcross/C) /* reocgnize S/Y/A S/Z/B T/Y/B T/Z/A */
 G<=Eq(Scross/C Tcross/A) /* reocgnize S/Y/B S/Z/A T/Y/A T/Z/A */
 H<=Eq(Scross/C Tcross/B) /* reocgnize S/Y/B S/Z/A T/Y/A T/Z/B */
 I<=Eq(Scross/C Tcross/C)] /* reocgnize S/Y/B S/Z/A T/Y/B T/Z/A */

 …...)

5.7.3. Assertion of the mapped output
The one condition B of the recognition determines each output through a priority

convergence network in which the recognition results are first priority collected and then
presented to the AssertA behavior just before the final priority interaction behavior that asserts
the output condition.

The one B condition and the eight A conditions from the cross association recognition will
pass through the convergence network and set out/Z/A or out/Z/B. When all nine inputs are N
the output will be out/Z/N.

out/Z
all to out/Z/A

all to out/Z/B

cross/A/
cross/C/
cross/E/
cross/G/
cross/I/
cross/B/
cross/D/
cross/F/
cross/H/

assert output
condition

converge
recognitions

A

B

A
P

P
PP

P
P

P

PA
B

Figure 5.18. Two condition output convergence network to assert out/Z.

Output convergence portion of interaction dependency expression:

A Journey Through Computatuion 2/21/25, 11:39 AM

120 Copyright © 2024 by Karl Fant

out/Z<= Pr(Aa(Pr(Pr(Pr(cross/A cross/C) Pr(cross/E cross/G)) cross/I))
 Pr(Pr(cross/B cross/D) Pr(cross/F cross/H)))

5.7.4. The complete network realizing the example interaction.
An interaction begins as an empty network with S/Y/N, S/Z/N, T/Y/N, T/Z/N all internal

behaviors asserting N and out/W/N, out/X/N, out/Y/N, out/Z/N. Inputs S/Y/A, S/Z/A, T/Y/B,
Y/Z/A transition to interaction differentness conditions and the output localities out/W/A, out/X/
B, out/Y/B, out/Z/A transitions to the determined interaction differentness conditions. S/Y, S/Z,
T/Y, Y/Z transition back to N, and out/W, out/X, out/Y, out/Z transitions to N leaving the
interaction network empty of interaction differentness conditions bounding one temporal
instance of one specific interaction of differentness.

BAAA

AABA

ABBBABBA
ABABABAAAABB

AAABAAAA
AA AB BA

AA
AB
BA

S/Y S/Z

T/Y T/Z out/W out/X out/Y out/Z

out/Y

out/W

out/X

out/Z

output
convergence

A

A

A

A

B

B

B

B

S/Y
S/Z

T/Y
T/Z

recognize presensted input name
Recognized

input

Recognized
input

A

B

C

D

E

F

G

H/

I

R ER

R
R

E

E

E

E

E

E

E

E

E

E

E

E

E

E

cross/

[A A]

[A B]

[B A]

S/Y S/Z

T/Y T/Z
[A A]

[A B]

[B A]

P
P

PP A
P

P
P

P

P
P

PP

P
P

P

P

P
P

PP

P
P

P

P

P
P

P
P

P
P

P
P

A

A

A

final
convergence

to output

assert
output
cond-
ition

BA-AA=>AABA

BA-AB=>ABAB

BA-BA=>BAAA

AB-AA=>AAAB

AB-AB=>ABAA

AB-BA=>ABBB

AA-AA=>AAAA

AA-AB=>AABB

AA-BA=>ABBA

YZ -YZ=>WXYZ
S T => out
the mapping

BB

BB

BB

A
B

Figure 5.19. Two interaction differentness conditions with four interaction mappings
realizing the example interaction with 55 behaviors.

A Journey Through Computatuion 2/21/25, 11:39 AM

121 Copyright © 2024 by Karl Fant

The complete interaction dependency expression:

(2condexamp(S/[Y Z]/{B A N} T/[Y Z]/{B A N} => OUT/[W X Y Z]/{B A N})
(cross/[A B C D E F G H I]/{B A N}/

Scross/[A B C]/{B A N} Tcross/[A B C]/{B A N})
 Scross/[A<=Eq(Ro(S/Y) Ro(S/Z)) /* reocgnize S/Y/A S/Z/A */

 B<=Eq(Ro(S/Y) S/Z) /* reocgnize S/Y/A S/Z/B */
 C<=Eq(S/Y Ro(S/Z))] /* reocgnize S/Y/B S/Z/A */

 Tcross/[A<=Eq(Ro(T/Y) Ro(T/Z)) /* reocgnize T/Y/A T/Z/A */
 B<=Eq(Ro(T/Y) T/Z) /* reocgnize T/Y/A T/Z/B */
 C<=Eq(T/Y Ro(T/Z))] /* reocgnize T/Y/B T/Z/A */

/* cross association recognition. Only one transitions to B the other 8 transition to A.*/
/* When the input is all N all of Scross, all of Tcross and all of cross transition to N */
 cross/[A<=Eq(Scross/A Tcross/A)/* reocgnize S/Y/A S/Z/A T/Y/A T/Z/A */

 B<=Eq(Scross/A Tcross/B) /* reocgnize S/Y/A S/Z/A T/Y/A T/Z/B */
 C<=Eq(Scross/A Tcross/C) /* reocgnize S/Y/A S/Z/A T/Y/B T/Z/A */
 D<=Eq(Scross/B Tcross/A) /* reocgnize S/Y/A S/Z/B T/Y/A T/Z/A */
 E<=Eq(Scross/B Tcross/B) /* reocgnize S/Y/A S/Z/B T/Y/A T/Z/B */
 F<=Eq(Scross/B Tcross/C) /* reocgnize S/Y/A S/Z/B T/Y/B T/Z/A */
 G<=Eq(Scross/C Tcross/A) /* reocgnize S/Y/B S/Z/A T/Y/A T/Z/A */
 H<=Eq(Scross/C Tcross/B) /* reocgnize S/Y/B S/Z/A T/Y/A T/Z/B */
 I<=Eq(Scross/C Tcross/C)] /* reocgnize S/Y/B S/Z/A T/Y/B T/Z/A */

/* assert out/Z */
out/Z<= Pr(Aa(Pr(Pr(Pr(cross/A cross/C) Pr(cross/E cross/G)) cross/I))

Pr(Pr(cross/B cross/D) Pr(cross/F cross/H)))
/* assert out/Y */

out/Y<= Pr(Aa(Pr(Pr(Pr(cross/A cross/D) Pr(cross/E cross/H)) cross/I))
Pr(Pr(cross/B cross/C) Pr(cross/F cross/G)))

/* assert out/X */
out/X<= Pr(Aa(Pr(Pr(Pr(cross/A cross/B) Pr(cross/D cross/G)) cross/I))

Pr(Pr(cross/C cross/C) Pr(cross/F cross/H)))
/* assert out/W */

out/W<= Pr(Aa(Pr(Pr(Pr(cross/A cross/B) Pr(cross/C cross/D))
 Pr(Pr(cross/F cross/G) Pr(cross/H cross/G))))

 cross/I))

There is less condition differentiation and more association differentiation.

5.7.5. Two differentness condition interaction with extrinsic coordination
With an extrinsic coordinating behavior such as a mathematician or timing analysis and a

clock the N condition is no longer needed and the AssertA behavior, which becomes a default, is

A Journey Through Computatuion 2/21/25, 11:39 AM

122 Copyright © 2024 by Karl Fant

no longer needed. Two differentness condition extrinsically coordinated interaction behaviors
reduce to Boolean logic as shown in Figure 5.20.

BA
AA

A B
A
B

M

N O

Equality

A
BA

B
N

Rotate

O O

Priority

BB
BA

A B
A
B

N

M

Figure 5.20. Two condition interaction behaviors assuming extrinsic coordination.

An extrinsically coordinated network can make assumptions about behavior such as that after
a specific time interval all interactions within the association network have occurred. With only
two possibilities and after the interval one possibility was not successful it can be assumed by
default that the other possibility was successful. At a specified time or at the discretion of the
mathematician a so called truth function will be asserting T indicating its own truth or it will be
asserting F indicating by default the alternate truth. The converge network for each output with
default behavior reduces to Figure 5.21.

out/Z

recognition
that generates
condition A
recognition
that generates
condition B

Z/A is now a default condition of Z/B not
being asserted at the clock tic and does
not need to be explicitly determined.

Reg Reg

Clock

Figure 5.21. Extrinsically coordinated output convergence.

Also, with the truth function comes the “don’t care condition. If a truth function can perform
its duty by ignoring a related variable then it does not care what the condition of the variable
might be. With extrinsic control logical completeness is no longer necessary.

Figure 5.21 seems to be much more efficient than Figure 5.18 but it comes with the
conceptual cost of an incomplete logic and a logically extrinsic critical timing requirement and
timing referent. Extrinsic coordination is a crutch propping up an insufficient logic.

5.8. Constrained to one differentness condition:
Pure association differentiation

Constrained to one interaction differentness condition named A condition interaction
differentiation ceases to exist and all interaction differentiation is in terms of differentness of
place of association. The mapping is now entirely in terms of names of places of association
rather than in terms of names of conditions. The collaboration of condition differentnesses A and
N reduce to serving only to assert or not assert the differentness of a place of association.

A Journey Through Computatuion 2/21/25, 11:39 AM

123 Copyright © 2024 by Karl Fant

There is no longer any need for the Rotate behavior or the Assert behavior. There are no
interactions of different conditions. There are only interactions of two or more As which can be
determined with a threshold. The Equality behavior reduces to an “all of” behavior. The priority
behavior reduces to a “one of” behavior. Replacing A with D the behaviors of Figure 5.22
correspond to the “all of” and “one of” behaviors of Section 3.2. For continuity this chapter will
continue using A as the only differentness condition. These primitive behaviors do not have
reference names but are referenced syntactically with [] and { }.

A
A

A

M

N O

“all of” O<=[M N]

–
– N

N

N
O

“one of” O<={M N}

A
A

AN A
A N

N

N

M

Equality Priority

D
D

DB Z–
– N

N

N
ZD

D
DB D

D N

N

N

AA

Sec 3.2 Sec 3.2

Figure 5.22. One differentness condition association interaction behaviors.

Mutual exclusivity, previously represented by asserting one at a time of two or more
differentness conditions at a single place of association is now represented with two or more
places of association only one of which, at a time, will transition to A with the rest remaining at
N. In Figure 5.23 the locality named S consists of three places of association named U, V and W
only one of which, at a time, will transition to A. The locality named T consists of three places of
association named X, Y and Z only one of which, at a time, will transition to A. The locality
named out consists of nine places of association named A, B, C, D, E, F, G, H and I only one of
which, at a time, will transition to A.

An interaction will begin with the presented input at N and with all behaviors asserting N.
Only one of U, V or W and one of X, Y or Z will transition to A. The other inputs will remain at
N. Only one of the equality behaviors will be presented with input completeness AA and
transition its output to A. The other eight equality behaviors will be presented with incomplete
input and will not transition their outputs which will remain asserting N. When the presented
inputs transition back to all N the one equality behavior will transition its output to N and all of
the equality behaviors will be asserting N leaving the interaction network empty and bounding

X
Y
Z

mapping
table

U
A
D
J

V
B
E
K

W
C
F
L

specifies
interaction→

relations

W Z => L
V Z => K
U Z => J
W Y => F
V Y => E
U Y => D
W X => C
V X => B
U X => A

A Journey Through Computatuion 2/21/25, 11:39 AM

124 Copyright © 2024 by Karl Fant

one temporal instance of one specific interaction of differentness. Figure 5.23 illustrates the
transition of input differentnesses to S/U/A and T/Y/A.

Two mutually exclusive differentnesses are mutually inclusively cross associated to produce
one mutually exclusive differentness.

L

C

KJ
FED

BA
U V W

X
Y
Z

S/

T/ out/

example interaction

U/

V/

W/

B/

C/

D/

A/

X/

Y/

Z/

F/

J/

K/

E/

L/

Recognized
input

S/U T/X

S/V T/X

S/W T/X

S/U T/Y

S/V T/Y

S/W T/Y

S/U T/Z

S/V T/Z

S/W T/Z

S/

T/

out/

A
N

Figure 5.23. One differentness condition with two interaction mappings realizing the
example interaction with 9 behaviors.

The complete interaction expression:

(Onecondexamp1 (S/{U,V,W}/{A N}, T/{X,Y,Z}/{A N} -> out/{A,B,C,D,E,F,J,K,L}/{A N});
 out/{A<=[S/U T/X]

B<=[S/V T/X]
C<=[S/W T/X]
D<=[S/U T/XY]
E<=[S/V T/Y]
F<=[S/W T/Y]
G<=[S/U T/Z]
H<=[S/V T/Z]
I<=[S/W T/Z] })

There is no condition interaction differentiation and all interaction differentiation is
association differentiation.

A Journey Through Computatuion 2/21/25, 11:39 AM

125 Copyright © 2024 by Karl Fant

5.8.1.1. Generality of mapping
The rank of “all of” behaviors is the cross association recognition of presented input. The

one transition to A can realize any mapping to any output locality of fewer than nine
differentnesses with convergence through “one of” behaviors as illustrated inFigure 5.24. The
places of association are renamed with A, B and C to illustrate the differentness of place of
association. Differentnesses S/B/A T/B/A and out/B/A all asserting /B/A are all different by
virtue of the differentness of the localities of association of S, T and out.

Figure 5.24 illustrates the presentation transition to S/C/A and T/A/A leading to the assertion
of output differentness out/C/A.

A/

B/

C/

B/

C/

A/

A/

B/

C/

S/

T/

S/

T/ out/

example interaction

C

C

AA
BCB

BA
A B C

A
B
C

out/

A
N

Figure 5.24. General mapping with “all of” and “one of” behaviors.

The complete interaction expression:

(Onecondexamp2 (S/{U V W}/{A N} T/{X Y Z}/{A N} -> out/{A B C}/{A N})
 out/{A<= { [S/U T/X] [S/U T/Z] [S/V T/Z] }

B<= { [S/V T/X] [S/U T/Y] [S/W T/Y] }
C<= { [S/W T/X] [S/V T/Y] [S/W T/Z] } })

Expressional generality, the ability to map any presented input differentness to any asserted
output differentness is now realized entirely in terms of association differentiation. There is no
differentiation in terms of differentness of condition.

5.9. Spectrum summary: The differentness of differentness
Differentnesses and their interaction can be expressed as differentness of conditions with

specific interaction propensities promiscuously associating at a place of common association
(pure condition differentiation) or as differentness of places of association with specific
association relations each asserting only two different conditions, A and N with promiscuous
interaction propensities (pure association differentiation) or with varying proportions of

A Journey Through Computatuion 2/21/25, 11:39 AM

126 Copyright © 2024 by Karl Fant

condition differentiation and of association differentiation across a spectrum of differentiation.
There must always be a little bit of each domain of differentiation in the expression of any
interaction, at least one place of association with pure condition differentiation and at least two
conditions with pure association differentiation.

As the spectrum was traversed from the pure condition differentiation end of the spectrum
association differentiation took on increasing expressional duties until with pure association
differentiation there was no longer any condition differentiation.

Pure Condition
Differentiation

Pure Association
Differentiation

D
N

neuron
networks

Cell
metabolism

Protein interaction
in cytoplasm

decimal
arithmetic

more condition differentiation
less association differentiation

less condition differentiation
more association differentiation

DNA
Boolean

logic
10130 possible

proteins
indefinitely extensible
association structure

Mixed
Differentiation

 UX -> A
 VX -> B
 WX -> C
 UY -> D
 VY -> E
WY -> F
 UZ -> J
 VZ -> K
WZ -> L

V
Z

Example
interaction

L

C

KJ
FED

BA
U V W

X
Y
Z

U

V

W

UX

VX

WX

UY

B

C

D

A

X

Y

Z

VY

WY

UZ

VZ

WZ

F

J

K

E

L

A
N

S/

T/

out/

Figure 5.25. The spectrum of differentiation.

In the center of Figure 5.25 is the example interaction. To the right is shown the pure
association expression of the interaction. To the left is shown the pure condition expression of
the interaction. The pure condition expression and the pure association expression can be viewed
as duals in specific respects.

• Each maps directly from the example interaction table.
• There are nine condition interaction propensity relations on the left and nine interaction

behaviors on the right.
• There are six input conditions on the left and six input localities on the right.
• There are nine output conditions on the left and nine output localities on the right.
• On the left persistences asserting conditions freely associating in a shaking bag interact

according to their asserted condition’s interaction propensities.
• On the right a network of statically associated interaction behaviors interact according to

their association relations.

The two ends of the spectrum are the expression realms of nature. At the pure condition
end is the biological cell with lots of unique conditions, proteins, with specific interaction
propensities and relatively little association structure. There are 10130 possible protein folding
conditions and uncountable possible protein interaction relations. At the pure association end of

A Journey Through Computatuion 2/21/25, 11:39 AM

127 Copyright © 2024 by Karl Fant

the spectrum is the neural network which is the direct association of differentnesses through
association interaction behaviors.

The two realms of differentness are coextensive in that a range of differentness of
condition reuses and extends the range of differentness expression of a place of association and
each place of association reuses and extends the differentness expression of a range of
differentness conditions. They collaborate with each extending the expression of differentness of
the other to indefinitely extend expression of differentness.

The two realms cooperate in complex ways. A biological cell full of protein conditions
contains associating organelles each isolating a pure condition expression. Cells associate to
form organs which associate to form an organism in the midst of which is the blood stream, a
pure condition expression indiscriminately associating to every cell in the organism.

Humans tend to express inside the spectrum encoding differentness with place-value
numbers, place being association differentness and value being condition differentness. There are
few conditions, few interaction behaviors and large indefinitely extensible association networks.

One domain of expression can be held constant while the other domain is allowed free
rein. Conditions and interaction behaviors can be held constant while supporting arbitrarily
complex association networks. Ten different numerals and their arithmetic behaviors support a
vast realm of arbitrarily extensible numbers and their interactive association. The association
relations can be held constant while condition differentiation is arbitrarily available. All
mammals have essentially a constant association structure with the same body design, organ
structures and cell structures. The variability among mammals is largely a matter of protein
conditions expressed by DNA.

The spectrum of differentiation encompasses and unites disparate expressions of
differentness and its interaction that previously appeared to be distinct or only superficially
related. Nature and humans interact in fundamentally the same way in terms of differentness and
the specific interaction of differentness.

A Journey Through Computatuion 2/21/25, 11:39 AM

128 Copyright © 2024 by Karl Fant

Appendix A: Blinded by Elegance:
The Null Convention Logic Library

A.
The reader may have notice that Null Convention Logic (NCL)1 and its operator library are

not mentioned in the text. There are strategic reasons, conceptual reasons, practical reasons and
technical reasons.
A.1. Null Convention Logic

Null Convention Logic was conceived as a threshold logic with hysteresis behavior that
monotonically transitioned between “diff” completeness and completely “null” or “not diff”.
Because of multi-rail differentness representation complementing is a matter of relabeling rails
instead of converting signals so there are no signal conversions in the wavefront path. Wavefront
path logic is purely positive. The only signal conversion in NCL is the conversion of the closure
of an oscillation.

Threshold logic was academically established and fully characterized. After a thorough
review of threshold logic by my colleague Dave Duncan the library of NCL operators was
conceived in terms of the threshold functions of four or fewer inputs. It turned out that there was
an established mapping between positive Boolean functions of four or fewer inputs and threshold
functions of four or fewer inputs. It was considered that this correspondence between positive
Boolean functions of four or fewer inputs, threshold functions of four or fewer inputs and the
NCL library operators as shown in Figure A.1 was a compelling correspondence of primitivities
that would be advantageous.

A Journey Through Computatuion 2/21/25, 11:39 AM

129 Copyright © 2024 by Karl Fant

NP equivalence classes for positive
Boolean functions of 4 or fewer variables

A

th12
buf

th22
th13
th23
th33

th23w2
th33w2

th14
th24
th34
th44

th24w2
th34w2
th44w2
th34w3
th44w3

th24w22
th34w22
th44w22
th54w22
th34w32
th54w32

th44w322
th54w322

thxor
thand

thcomp
Positive functions that are not linearly separable
and are therefore not threshold functions.
(Muroga, p436)

The NCL function library.

Source Rationale for the NCL Function Library.
(Muroga, pp 435-437)

1 1
11 2
11 1
111 3
111 1
111 2
211 3
211 2
1111 4
1111 1
2211 5
2211 2
1111 3
1111 2
2111 4
2111 2
2211 4
2211 3
3211 5
3211 3
3221 5
3221 4
2111 3
3111 4
3111 3

Muroga equivalence classes
for threshold functions of 4

or fewer variables
Input
Weights
Wi

Threshold
T

2 variables

3 variables

4 variables

1 variable

A
B 2

A
B

1

C
D

A
B 1

C
D

A
B 2

C
D

A
B 3

C
D

A
B 4

C
D

A
B 3

D
C
A
B 5 D

C
A
B 4D

C

A
B 3 D

C
A
B 2

C
D

A
B 4

C
D

A
B 3

C
D

A
B 4

C
D

A
B 3

D
C
A
B 5

C
D

A
B 4

C
D

A
B 5

C

A
B 2

A
B
C

1

A
B
C

3

A
B
C

3

A
B
C

2

C
D

A
B 2

2

2
1

A
B
C
D

1

1
2

A
B
C
D

2

2 1

A
B

C
D 2

X1
X1X2

X1 V X2
X1X2 V X2X3 V X1X3

X1X2X3
X1 V X2 V X3

X1(X2 V X3)
X1 V X2X3
X1X2X3X4

X1 V X2 V X3 V X4
X1X2X3 V X1X2X4

X1 V X2 V X3X4
X1X2X3 V X1X2X4 V X1X3X4 V X2X3X4

X1X2 V X1X3 V X2X3 V X1X4 V X3X4 V X2X4
X1X2X3 V X1X2X4 V X1X3X4

X1 V X2X3 V X2X4 V X3X4
X1X2 V X1X3X4 V X2X3X4

X1X2 V X1X3 V X2X3 V X1X4 V X2X4
X1X2 V X1X3X4

X1 V X2X3 V X2X4
X1X2 V X1X3 V X2X3X4

X1X2 V X1X3 V X2X3 V X1X4
X1X2 V X1X3 V X1X4 V X2X3X4

X1X2 V X1X3 V X1X4
X1 V X2X3X4
X1X2 V X3X4

X1X3 V X2X3 V X1X4 V X2X4
X1X2 V X2X3 V X3X4

1
1
2
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure A.1. Function classification rationale for the NCL operator library.

There are 28 PN classes of unate or positive boolean functions of four or fewer variables.
There are 25 classes of threshold functions of four or fewer variables. Twenty five of the positive
Boolean classes are linearly separable and map directly onto the 25 classes of threshold functions
of four or fewer variables. The 3 remaining Boolean functions of four or fewer variables are not
linearly separable and do not map onto threshold functions but can map onto threshold circuits.
Including these three circuits in the library allowed a complete correspondence between the NCL
library and all positive Boolean functions of four or fewer variables as shown in Figure A.2.

We considered this correspondence to be elegant, practical and even necessary to relate to
existing practice: a useful strategic positioning.

• We could use Boolean equations to design NCL circuits.
• We could relate to a familiar language.
• We could possibly translate clocked Boolean designs directly to NCL designs.
• We could use standard design tools for NCL.

A Journey Through Computatuion 2/21/25, 11:39 AM

130 Copyright © 2024 by Karl Fant

14. AB + AC + AD + BCD

9. A + B + C + D

10. AB + AC + AD + BC + BD + CD

11. ABC + ABD + ACD + BCD

12. ABCD

13. A + BC + BD + CD

2. A + B

3. AB

4. A + B + C

5. AB + BC + AC

8. AB + AC

7. A + BC

1. A

6. ABC

15. ABC + ABD + ACD

16. A + BCD

17. AB + AC + AD

18. A + B + CD

19. AB + AC + AD + BC + BD

20. AB + ACD + BCD

21. ABC + ABD

22. A + BC + BD

23. AB + ACD

24. AB + AC + AD + BC

25. AB + AC + BCD

26. AB + CD

27. AB + BC + AD

28. AC + BC + AD + BD

C

A

A
B 2

A
B

1

A
B
C

1

A
B 2

A
B
C

3

A
B
C

3

A
B
C

2

C
D

A
B 1

C
D

A
B 2

C
D

A
B 3

C
D

A
B 4

C
D

A
B 2

C
D

A
B 3

D
C

A
B

5

D
C

A
B

4

D
C

A
B

3

D
C

A
B

2

C
D

A
B

4

C
D

A
B

3

C
D

A
B 4 C

D

A
B 3

C
D

A
B 5

D
C
D

A
B 4

D
C
D

A
B 5

2

2
1

A
B
C
D

1

1
2

A
B
C
D

2

2

A
B

C
D 2

1

TH24W22

TH34W22

TH34W3

TH44W2

TH44W22

TH44W3

TH54W22

TH34W32

TH44W322

TH54W32

TH54W322

THAND

THCOMP

THXOR

TH13

TH23

TH23W2

TH33

TH33W2

TH14

TH24

TH34

TH44

TH24W2

TH34W2

TH12

TH22

Figure A.2. The 28 NCL library operators with their corresponding positive Boolean
functions.

A.2. The strategic error
 Relating so directly to Boolean logic turned out to not be as useful as anticipated. While we

could specify an NCL network in terms of Boolean operations the correspondence was not direct.
There were a lot of considerations beyond the Boolean equations involved. Also we could not
just take clocked Boolean designs and map them to NCL. The two logics behaved very
differently.

Furthermore, relating to Boolean logic implied that Boolean logic was somehow more
fundamental than NCL. We were trying to establish NCL as a superior form of logic to a
population who by training and experience accepted Boolean logic as conceptually fundamental,
a minimal necessary and sufficient theoretical standard to which all else reduces. Relating to
Boolean logic just reinforced this view. It took many years of experience to realize that relating
NCL to Boolean logic was more confusing then clarifying.

While everyone understood Boolean logic, threshold logic was not a current topic of
familiarity. Its time had passed without it becoming used or widely understood. We were relating
to a dinosaur, an elegant dinosaur but a dinosaur nonetheless.
A.3. The conceptual error

A Journey Through Computatuion 2/21/25, 11:39 AM

131 Copyright © 2024 by Karl Fant

The logic portrayed by the library of NCL operators is involved and complicated. For all its
sense of completeness and closure with the 28 operators the library did not convey a sense of
primitivity. Each operator had an assigned threshold and many of the inputs had assigned
weights. Networks were difficult to design and optimize because each input had to be connected
to a correctly weighted operator input.

The conceptual error was to characterize this complicated set of behaviors as primitive. They
seemed primitive. All but three operators were single gate threshold functions. I was aware that
the gates had corresponding 1 of M and M of M networks shown in Figure A.3 but the threshold
gates seemed like a higher level of primitivity, of atomicity and of efficiency. Even though there
was a corresponding network of simpler operations the threshold operator was still conceptually
a single gate, not a network, implying primitivity. The fact that it was a logic of threshold
functions further implied an established primitivity.

Another confusion was that the operator hysteresis behavior was established with a single
feedback signal further implying atomicity and primitivity.

A Journey Through Computatuion 2/21/25, 11:39 AM

132 Copyright © 2024 by Karl Fant

4. A + B + C

5. AB + BC + AC

8. AB + AC

7. A + BC

6. ABC

C

A
B 2

A
B
C

1

A
B
C

3

A
B
C

3

A
B
C

2

TH13

TH23

TH23W2

TH33

TH33W2

B
C
A

2 1

2

2

2

A
B

C 1

14. AB + AC + AD + BCD

9. A + B + C + D

11. ABC + ABD + ACD + BCD

12. ABCD

13. A + BC + BD + CD

C
D

A
B 1

C
D

A
B 2

C
D

A
B 3

C
D

A
B 4

C
D

A
B 3

C
D

A
B 2

TH14

TH24

TH34

TH44

TH24W2

TH34W2

10. AB + AC + AD + BC + BD + CD

2. A + B

3. AB

1. A
A

A
B 2

A
B

1
TH12

TH22

1

1
2

A
B
C
D

2

2

1

3

3

3

C
D

A
B

3

1

2

2

2

C

B

D

A

3

1
2

2
1

A
B

C

2

2

2

C
B

D

A

1

A Journey Through Computatuion 2/21/25, 11:39 AM

133 Copyright © 2024 by Karl Fant

2

2
1

A
B
C
D

2

2

C
B

D 1

A

2

C

B

D
3 1

A

2

2

A
B

C
D 2

1

15. ABC + ABD + ACD

16. A + BCD

17. AB + AC + AD

18. A + B + CD

21. ABC + ABD
D
C

A
B

5

D
C

A
B

4

D
C

A
B

3

D
C

A
B

2

C
D

A
B

4

C
D

A
B

3

C
D

A
B 4

TH24W22

TH34W22

TH34W3

TH44W2

TH44W22

TH44W3

TH54W22

2

2

A
B
C

D 2

1

A
B

D
C 2

1

19. AB + AC + AD + BC + BD

20. AB + ACD + BCD

22. A + BC + BD

23. AB + ACD

24. AB + AC + AD + BC

25. AB + AC + BCD

26. AB + CD

27. AB + BC + AD

28. AC + BC + AD + BD

C
D

A
B 3

C
D

A
B 5

D
C
D

A
B 4

D
C
D

A
B 5

TH34W32

TH44W322

TH54W32

TH54W322

THAND

THCOMP

THXOR

C

A
B

D
3 1

2

2

2
C

B

D

A

2

2
1

1

3
C
D

2A
B

3

1

3
C
D

A
B

1
3

2

2

2
C

B

D

A

2

1

3

C
D

A
B

3

3

1

2

2
1

A
B
C
D

2

2

A
B

C
D 2

1

2

2

A

B
C

D 2
1

2

1

1
2

A
B
C
D

2

2C

B

D

A

3

1

Figure A.3. NCL library with equivalent 1ofM and MofM networks.

The library seemed to embody a superior expressional efficiency and an elegant coherence or
completeness. It was not until I started thinking in terms of “all of” and “one of” as primitives
that I was able to stand outside the library and detach from Dave’s and my creation.
A.4. The practical error

After studying many ways to implement the library gates including several implementations
with actual threshold behavior it was finally decided to implement the gates with transistor
switching networks. The decision was driven by what was possible and what was available.
While there were fabrication techniques for threshold oriented devices using capacitors and other
devices they were not as developed, as available or as efficient as the transistors. It was not so
much an error as a constraint of practicality. So the elegant threshold behaviors were
implemented with Boolean switching networks which, as it turned out, did not compete well with
clocked Boolean switching networks.

Other possibilities of implementing the behaviors with inherent threshold and hysteresis
behavior such as quantum dots, magnetic domains, memristors for instance may become
practical in the future.

A Journey Through Computatuion 2/21/25, 11:39 AM

134 Copyright © 2024 by Karl Fant

4. A + B + C

5. AB + BC + AC

8. AB + AC

7. A + BC

6. ABC

C

A
B 2

A
B
C

1

A
B
C

3

A
B
C

3

A
B
C

2

TH13

TH23

TH23W2

TH33

TH33W2

14. AB + AC + AD + BCD

9. A + B + C + D

11. ABC + ABD + ACD + BCD

12. ABCD

13. A + BC + BD + CD

C
D

A
B 1

C
D

A
B 2

C
D

A
B 3

C
D

A
B 4

C
D

A
B 3

C
D

A
B 2

TH14

TH24

TH34

TH44

TH24W2

TH34W2

10. AB + AC + AD + BC + BD + CD

2. A + B

3. AB

1. A
A

A
B 2

A
B

1
TH12

TH22

A
B

A
B
C

A
B

C

B
C
A

A
B

C

C
D

A
B

C

B

D

A

A
B
C

C
D

A
B

C
D

A
B

A
B

A
B
C
D

C
B

D

A

A Journey Through Computatuion 2/21/25, 11:39 AM

135 Copyright © 2024 by Karl Fant

15. ABC + ABD + ACD

16. A + BCD

17. AB + AC + AD

18. A + B + CD

21. ABC + ABD
D
C

A
B

5

D
C

A
B

4

D
C

A
B

3

D
C

A
B

2

C
D

A
B

4

C
D

A
B

3

C
D

A
B 4

TH24W22

TH34W22

TH34W3

TH44W2

TH44W22

TH44W3

TH54W22

19. AB + AC + AD + BC + BD

20. AB + ACD + BCD

22. A + BC + BD

23. AB + ACD

24. AB + AC + AD + BC

25. AB + AC + BCD

26. AB + CD

27. AB + BC + AD

28. AC + BC + AD + BD

C
D

A
B 3

C
D

A
B 5

D
C
D

A
B 4

D
C
D

A
B 5

TH34W32

TH44W322

TH54W32

TH54W322

THAND

THCOMP

THXOR2

2
1

A
B
C
D

2

2

A
B

C
D 2

1

C
D

A
B

A
B
C

D

C

A
B

D

A
B

D
C

C

B

D

A

C
D

A
B

C
D

A
B

C
B

D
A

C

B

D

A

C

B

D

A

C

B

D

A

A
B

C
D

1

1
A
B
C
D

A

B
C

D

1

1
2

A
B
C
D

Figure A.4. The NCL library in terms of “one of” and “all of” behaviors.

A.5. The technical error
The technical error is the completeness behavior of the library operators which can lead to

deadlock. In viewing the library operators as threshold functions, including the three operators
that actually encapsulated threshold networks, they were considered as primitive with atomic
behavior. In particular, completeness relations would apply across all inputs of each operator.
When a particular quantity of inputs transitioned to “diff” an operator would transition its output
to “diff” and when “all of” the inputs transitioned to “not diff” the operator would transition its
output to “not diff”. This completeness protocol worked in most circumstances but not always
and the occasional failure is the fatal flaw. The difficulty is illustrated with the NCL THXOR
operator in relation to its corresponding network.
A.5.1. The nominal behavior of THXOR

Figure A.5 shows the behavior of THXOR (top) and its associated network (bottom) is valid
if [A,B] and [C,D] trace back to a “one of” relationships and are mutually exclusively presented.

A Journey Through Computatuion 2/21/25, 11:39 AM

136 Copyright © 2024 by Karl Fant

A
B
C
D

THXORA
B
C
D

Z

Z
A
B
C
D

THXORA
B
C
D

Z

Z
A
B
C
D

THXORA
B
C
D

Z

Z
A
B
C
D

THXORA
B
C
D

Z

Z

“data” wavefront “not data” wavefront “data” wavefront “not data” wavefront

Figure A.5. Nominal behavior of THXOR and its associated network
A.5.2. The race behavior of THXOR

The inputs of every “one of” behavior must be mutually exclusive, only one transition to
“diff” per “diff” wavefront. If [A,B] and [C,D] are not “one of” related they can collide and race
to the “one of” behavior.

A
B
C
D

THXORA
B
C
D

Z

Z
A
B
C
D

THXORA
B
C
D

Z

Z
A
B
C
D

THXORA
B
C
D

Z

Z

“data” wavefront more “data” wavefront “not data” wavefront

a b c

Figure A.6. [A,B] and [C,D] wavefronts collide.

In Figure A.6.a wavefront [C,D] transitions to “diff” first and Z transitions to “diff”. In
Figure A.6.b wavefront [A,B] transitions to “diff” while [C,D] is still at “diff” but Z is already
transitioned to “diff”. In Figure A.6.c the [C,D] “not diff” wavefront arrives. Z does not
transition to “not diff”. [A,B] will never close and the network is deadlocked. The not
coordinated wavefronts can also glitch Z which is equally disastrous.
A.5.3. The deadlock behavior of THXOR

Ensuring that any “one of” combination behavior has only one input transition to “diff” at a
time is a basic design rule. The direct means of ensuring that the [A,B] and [C,D] wavefronts are
mutually exclusive is for one component of each wavefront to come from the same 1composite
locality. For instance, in Figure A.7 A and C are replaced with S/0 and S/1 from

locality S/{1,0};

S/0 will enable B. S/1 will enable D. This is correct in that there will be only one input to the
“one of” behavior at a time. The deadlock difficulty with THXOR arises if either B or D
transition to “diff” during the “diff” phase of the other. Figure A.7 illustrates D transitioning
while [S/0,B] is “diff”.

In Figure A.7.a S/0 enables B and Z transitions to “diff”. In Figure A.7.b D transitions to
“diff” while [S/0,B] are still at “diff”. In Figure A.7.c [S/0,B] transitions to “not diff” but the
THXOR output Z does not transition to “not diff” because the input to THXOR is not completely
“not diff”. The protocol for [S/0,B] is not completed and never will be. D is waiting on S/1 which
will never occur because S/0 will never be closed and released. THXOR is deadlocked. If B and

A Journey Through Computatuion 2/21/25, 11:39 AM

137 Copyright © 2024 by Karl Fant

D transition to “diff” mutually exclusively, which is typical, then the THXOR operator works
just fine.

In the corresponding network of Figure A.7.c the completeness is across the individual
combination behaviors. D is not preventing the transition of Z so S/0 can complete its oscillation
and S/1 can eventually occur. Locality S is sufficient to ensure mutual exclusivity into the “one
of” behavior and does not risk deadlock or race.

The network works correctly and the atomic threshold THXOR operator does not.

S/1 S/0

B

D

THXOR
B

D
Z

Z

“data” wavefront “not data” wavefront

S/1 S/0

S/1 S/0

B

D

THXOR
B

D
Z

Z

S/1 S/0

S/1 S/0

B

D

THXOR
B

D
Z

Z

“data” wavefront

S/1 S/0

a b c
Figure A.7. The MUX protocol and deadlock.

The technical error is in treating the NCL operations as atomic primitives with completeness
across all the inputs. This deadlock possibility is present with any NCL threshold operator that
includes “one of” relations.

The THXOR difficulty was pointed out to me by others particularly by my colleague Stephen
Johnson on numerous occasions. I persisted in viewing the difficulty not as a flaw in the library
but as a problem of proper design rules. There is a necessary cooperation between the flow path
behavior and the NCL operators. The paths have to monotonically transition and certain mutual
exclusivities must be observed. My attitude was that this was just one of the mutual exclusivities
that had to be observed. The fact that it rarely occurs contributes to perceiving it as a network
design issue rather than a primitive atomic behavior issue. For many years I did not design
complex circuits myself but relied on teams of engineers. It was only much later after I lost
access to engineering support that I started designing significant NCL circuits myself. Only after
I encountered several deadlock situations in my own designs and ended up backing out several
threshold gates into networks of simpler gates to solve the completeness issue instead of altering
the flow path behavior did I realize that the notion of atomic completeness across all inputs of
many of the NCL operators is technically erroneous and that the characterization of the logic as
threshold functions was misguided.

The difficulty follows from the dual threshold nature of the NCL operators. Traditional
threshold logic is treated as passive logic functions that are coordinated with a clock. There was
only one threshold that was either met or not at the clock tic. The next clock tic tested the
threshold again. There was no behavior requirement imposed on the threshold function that
reflected to the behavior of its input. However the input behaved the threshold gate just
monitored the threshold.

With NCL there are two thresholds that have to be alternately matched so the input to the
operator must behave properly by monotonically transitioning between completeness conditions.
It is this behavior dependence between operator behavior and flow behavior that can be correct

A Journey Through Computatuion 2/21/25, 11:39 AM

138 Copyright © 2024 by Karl Fant

1. Karl M. Fant, Logically Determined Design: Clockless System Design with NULL Convention Logic,
(Hoboken, New Jersey, Wiley Interscience, 2005)

by construction. But this cooperative behavior can also be incorrect by construction as is the case
with the NCL operator completeness behavior. The criteria of correct construction can be subtler
than expected.

A Journey Through Computatuion 2/21/25, 11:39 AM

139 Copyright © 2024 by Karl Fant

Appendix B: Pipeline Performance
B.
B.1. Basic pipeline network structure and behavior

The first parameter of pipeline performance is the oscillation network period. The
oscillation path, shown in Figure B.1, is characterized in two parts, the wavefront flow path of
the oscillation, in green, and the bubble flow path of the oscillation, in orange*. The bubble
flow path contains the oscillation closure flow path (section 3.7). The notion of bubble and
bubble path will develop over the section. The combined delay of the two paths gives the
oscillation network period. By convention, the wavefront path includes the enable rank of the
input link and the bubble path includes the enable rank of the output link.

N
N

N
N

Figure B.1. Oscillation network oscillation/flow path.

Catenating the wavefront flow paths of the linked oscillations, Figure B.2, gives the
wavefront flow path of the pipeline and adding the delays of the wavefront flow paths gives the
wavefront path delay or forward latency of the pipeline.

N
N

N
N

Figure B.2. Wavefront flow path, the forward latency of pipeline.

Catenating the bubble flow paths of the linked oscillations, Figure B.3, gives the bubble flow
path of the pipeline and adding the delays of the bubble flow paths gives the bubble path delay
or reverse latency of the pipeline.

N
N

N
N

Figure B.3. Bubble flow path, the reverse latency of pipeline.

B.2. Primitive component performance
While delays in relation to some external time referent have no relevance to the correct

behavior of a network, its performance in relation to an external time referent might be important
to the network relating to behaviors external to the network. Its performance in relation to an

*. Bubble, an unusually apt asynchronous design term, is an emptiness into which wavefronts can flow.

A Journey Through Computatuion 2/21/25, 11:39 AM

140 Copyright © 2024 by Karl Fant

external time referent can be determined in terms of subnetwork delays in relation to the external
time referent.

Composing two half oscillations makes a complete oscillation. Each half oscillation
contributes a portion of delay to each path of the complete oscillation. The half oscillation
wavefront path delays are added to get the wavefront path delay for the new oscillation. The half
oscillation bubble path delays are added to get the bubble path delay for the new oscillation for
the new oscillation. Adding the wavefront path delay and the bubble path delay gives the period
of the new oscillation.

Figure B.4 shows the input half oscillation and the output half oscillation of the quad to dual
network component and the delays associated with the wavefront path and bubble path of each
half oscillation. To keep the delay discussion simple (connections) have no delay and primitive
search behaviors have delay based on their inputs.

1 input 20 ps
2 inputs 30 ps
3 inputs 40 ps
4 inputs 50 ps

Wavefront
path delay 30

Bubble
path delay 90

0

1

A/0
A/1
A/2
A/3

Z/0/0
Z/0/1
Z/1/0
Z/1/1

half
oscillation

half
oscillation

QuadToDual
network

N
X.COMP acpt.COMP

a. input half oscillation

Wavefront
path delay 30

Bubble
path delay 20

0

1

A/0
A/1
A/2
A/3

Z/0/0
Z/0/1
Z/1/0
Z/1/1

half
oscillation

half
oscillation

QuadToDual
network

N
X.COMP acpt.COMP

b. output half oscillation
Figure B.4. Half oscillations of quad to dual primitive network.

Figure B.5 shows the delays associated with the half oscillations of the dual to quad network
component.

A/0/0
A/0/1
A/1/0
A/1/1

Z/0
Z/1
Z/2

Z/3

half
oscillation

acpt.COMP

half
oscillation

DualToQuad
network

N
D.COMP

a. input half oscillation

A/0/0
A/0/1
A/1/0
A/1/1

Z/0
Z/1
Z/2

Z/3

half
oscillation

acpt.COMP

half
oscillation

DualToQuad
network

N
D.COMP

b. output half oscillation

Wavefront
path delay 30

Bubble
path delay 20

Wavefront
path delay 30

Bubble
path delay 90

Figure B.5. Half oscillations of dual to quad primitive network.

B.3. Network composition
Networks are composed by associating the locality name of an output half oscillation to the

corresponding locality name of an input half oscillation forming a full oscillation. The
performance of the full oscillation is the combination of the performance of the half oscillations.

A Journey Through Computatuion 2/21/25, 11:39 AM

141 Copyright © 2024 by Karl Fant

(X/0/0)

(X/0/1)

(X/1/0)

(X/1/1)

quaternary
to dual rail

dual rail to
quaternary

Z/0
Z/1
Z/2

Z/3

link
link0

1

A/0
A/1
A/2
A/3

half oscillation oscillation
half oscillation

N
N

wavefront path delay 60

bubble path delay 100

Wavefront path
delay 30

Bubble path
delay 20

oscillation period 160Wavefront path
delay 30

Bubble path
delay 90

Figure B.6. The composed components form a pipeline network with one full oscillation.

network conversion (A -> Z):
locality (A, Z)/{3,2,1,0}/;
locality X/[1,0]/{1,0}/;
 QuadToDual (A -> X)
 DualToQuad (X -> Z)
endnetwork

B.3.1. Composition performance
The key factor of pipeline performance is the oscillation period. The performance of a

boundary half oscillation is deferred until it is composed. For the composed network of Figure
B.6 the oscillation period of the composed oscillation in network conversion is 160 ps so the
maximum throughput of the pipeline is one “diff” wavefront every 320 ps. The pipeline will
sustain any throughput presented to its input slower than or equal to 320 ps per “diff” wavefront.
The initialization delay, the sum of the wavefront propagation delays, for network conversion is
120 ps. The initialization delay for the composed oscillation is 160 ps which in this case
determines the initialization delay 160 ps plus margin, for the network. Usually the initialization
delay is determined by the network wavefront propagation delay which is typically far longer
than any individual oscillation period.
B.3.2. Further composition

Since the output and the input boundaries of network conversion are compatible half
oscillations, two conversion networks can be connected forming a larger longpipe network. Both
component networks propagate initialization so the composed network propagates initialization.
Both networks propagate completeness behavior so the composed network accepts and
propagates completeness behavior. All orphans remain isolated. The composed network,
validated and bounded by half oscillations, is ready for further composition.

link
link0

1

A/0
A/1
A/2
A/3

N
N

A ->

longpipe
reverse latency 420

oscillation
period 160

half oscillation
wavefront path

delay 30

half oscillation
bubble path

delay 90

Z/0
Z/1
Z/2

Z/3

link
link0

1

N
N

-> Z

longpipe
Forward latency 240

oscillation
period 160

half oscillation
wavefront path

delay 30

half oscillation
bubble path

delay 20

wavefront path
delay 30

bubble path
delay 20

wavefront path
delay 30

oscillation
period 170

bubble path
delay 90

(X/0)

(X/1)

(X/2)

(X/3)

Figure B.7. Bigger network from smaller networks.

network longpipe (A -> Z):
locality (X, A, Z)/{3,2,1,0}/;
 conversion (A -> X)

A Journey Through Computatuion 2/21/25, 11:39 AM

142 Copyright © 2024 by Karl Fant

 conversion (X -> Z)
endnetwork

B.3.3. Longpipe performance
Performance parameters are accumulated as composition progresses. In Figure B.7 the

longest oscillation period is the new formed oscillation at 170 ps. The network will sustain a
throughput of 340 ps per “diff” wavefront. The forward latency is the sum of the wavefront path
delays, 240 ps. The reverse latency is the sum of the bubble path delays, 420 ps. The wavefront
path initialization delay is 240 ps. The slowest oscillation initialization delay is 170 ps So the
initialization delay for the new network is 240 ps plus margin.
B.3.4. Pipeline performance

The input and output of a pipeline are half oscillations which, for purposes of performance
analysis, are assumed to be sufficient flow in that when the input closure enables an input
wavefront a wavefront is present and flows into the pipeline and when an output wavefront is
presented its closure is present and the wavefront flows out of the pipeline. A pipeline network is
a unit of composition that flows with a characteristic throughput which equals the period of its
slowest oscillation and with a characteristic latency which is the delay of its wavefront path.
B.3.5. Performance in an environment

If the environment responds more slowly than the pipeline’s characteristic throughput then
the pipeline will conform to the throughput of the environment. If the environment can conform
to the throughput of the pipeline then the system will flow at the characteristic throughput rate of
the pipeline. If the environment demands a faster throughput than the pipeline can support then
the environment/pipeline system will fail.

A Journey Through Computatuion 2/21/25, 11:39 AM

143 Copyright © 2024 by Karl Fant

Appendix C: Wavefront Arbitration
C.

Uncoordinated wavefront flows that share a common resource must be arbitrated into
mutually exclusive coordinated flow behavior with only one wavefront proceeding at a time.
Wavefronts flow in “not diff”/“diff” wavefront pairs. An arbiter behavior will allow only one
wavefront pair to flow at a time.
C.1. The MUTEX

The mutual exclusion behavior of an arbiter is provided by a MUTEX. Figure C.1 Shows a
CMOS implementation of a MUTEX, an SR flipflop with a filter across the two outputs to
minimize metastable oscillation and facilitate resolution of the metastability.

M
U
T
E
X

G1

G2

R1

R2

G2

R1

R2

G1

Figure C.1.MUTEX circuit and symbol.

A MUTEX is a primitive mutual exclusion behavior. that will assert grants G1 or G2
mutually exclusively in time. They are asserted, respectively, in response to the requests R1 or
R2 which can be asserted at any time. If asserted simultaneously the MUTEX will chose one
request to grant and block the other request until the granted request is released. When the
granted request is released its grant will be removed and the waiting request will be immediately
granted. If one request arrives first it is granted and the second arriving request waits until the
first request is released upon which the waiting request is immediately granted. If a request is
released before it is granted then it is not granted and has no effect. So there is an assumption
that the behaviors asserting R1 and R2 are sensitive to their grants, will wait appropriately and
that the assertion of the grant will ultimately cause the release of the request.
C.2. The arbiter

A wavefront arbiter must allow a “not diff”/“diff” wavefront pair. A MUTEX request occurs
with the arrival of a “diff” wavefront and the transition of request to “diff”. With the arrival of
the “not diff” wavefront the request will transition to “not diff” and the MUTEX will
immediately allow a waiting grant. This does not allow for the passage and completeness of the
“not diff” wavefront before allowing the next grant. There must be an additional mechanism in
addition to the MUTEX that waits for the “not diff” wavefront to completely propagate before
granting the waiting request. Figure C.2 shows the arbiter core with the extra circuitry to wait on
the “not diff” wavefront.1 The arbiter core fits into an oscillation and arbitrates wavefront flow
through the oscillation.

A Journey Through Computatuion 2/21/25, 11:39 AM

144 Copyright © 2024 by Karl Fant

Arbiting oscillation

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

wavefront path
closure path
arbiter path

Figure C.2.Arbitrating oscillation.

In the following example an arbitrating oscillation receives two uncoordinated single rail
flows and produces a single coordinated dual rail flow. In Figure C.3 the arbiter oscillation
begins in an initial configuration awaiting wavefront flow.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.3.Arbiter oscillation awaiting wavefront flow.

“diff” wavefronts arrive simultaneously at R0 and R1.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.4.Request “diff” wavefronts arrive simultaneously at MUTEX.

In Figure C.4 two “diff” wavefronts arrive simultaneously at the MUTEX.

A Journey Through Computatuion 2/21/25, 11:39 AM

145 Copyright © 2024 by Karl Fant

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.5.The MUTEX grants R1 and blocks R0.

In Figure C.5 request R1 is granted with MUTEX Grant MG1 and Arbiter Grant AG1. R0 is
blocked by the MUTEX.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.6.The R1 flow closes with in1 enabling the “not diff” wavefront.

In Figure C.6 R1 flows through the link and closes with in1 enabling the “not diff” wavefront
flow. The closure also closed with the arbiter core through AG1COMP disabling AG0.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.7.R1 is released and R0 is immediately granted by the MUTEX.

In Figure C.7 the R1 “not diff” wavefront flows to the MUTEX releasing the R1 request. The
MUTEX immediately grants the R0 request with MG0 which is blocked at AG0. There is a
local time relation here in that the AG1COMP flow must arrive at AG0 before the “not
diff” wavefront arrives at R1 and releases the request.

A Journey Through Computatuion 2/21/25, 11:39 AM

146 Copyright © 2024 by Karl Fant

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.8.The “not diff” wavefront closure released the block of AG0.

In Figure C.8 the R1 “not diff” wavefront flow closure flows through AG1COMP and
releases the AG0 block.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.9.The R0 “diff” wave flows.

In Figure C.9 the R0 “diff” wavefront flows through AG0 and the link. The “diff” closure
flowing through AG0COMP blocks AG1 and enables the “not diff” wavefront at in0.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.10.The R0 “not diff” wavefront flows.

In Figure C.10 the R0 “not diff” wavefront flows through the link closing with in0, releasing
AG1 and the arbiter oscillation returns to its initial configuration awaiting the next “diff”
wavefront.
C.3. Arbitrating composite wavefronts

Figure C.11 shows an arbitrating oscillator arbitrating uncoordinated dual-rail flow paths
through a “one of” behavior into a single dual-rail flow path. Large composite wavefronts can be

A Journey Through Computatuion 2/21/25, 11:39 AM

147 Copyright © 2024 by Karl Fant

1. The arbiter core is derived from a standard asynchronous circuit called a tree arbiter the development of
which is recounted in Teresa Meng, Synchronization Design for Digital Systems, (Norwell, Massachusetts,
Kluwer Academic Publishers, 1991). pp 158-163.

arbitrated. The completeness of the dual-rail wavefront is used as the request. The grant enables
the flow of the wavefront through the grant link.

R0

R1

M
U
T
E
X

MG0

MG1

AG0

AG1

A/1 A/1

B/0

B/1

C/0

C/1

N
N

dual
rail

dual
rail

AG0COMP

AG1COMP

A/0

dual
rail

N

N

N

N

Arbiter core

dual
rail
flow

indepentent
dual rail flow

indepentent
dual rail flow

wavefront path
closure path
arbiter path

Figure C.11.Two dual rail paths arbitrated into “one of” behavior.

Figure C.12 shows large composite independent wavefronts arbitrated into a single
composite wavefront flow. Any one rail portion of the completeness of a wavefront can be used
as the request. The grant is used to enable the flow of the wavefront through the grant link. The
completeness of flow is managed between the grant link and the requesting link. The
completeness of the grant link is reduces to a single rail closure which presents to AGxCOMP
and closes with the requesting link.

R0

R1

M
U
T
E
X

MG0

MG1

AG0

AG1

A

B

C

N
N

AG0COMP

AG1COMP

N

N

N

N

Arbiter core

ACOMP/0

BCOMP/0

red

red

AA

BB

wavefront path
closure path

reduced closure path

indepentent
composite
wavefront

indepentent
composite
wavefront

merged
composite
wavefront

arbiter path

Figure C.12.Composite merge.

A Journey Through Computatuion 2/21/25, 11:39 AM

148 Copyright © 2024 by Karl Fant

Appendix D: Wavefronts and bubbles
D.

Wavefronts flow forward into bubbles. Bubbles flow backward around wavefronts. This
difficult to intuit counterflow behavior of wavefronts and bubbles is the fundamental dynamic
flow behavior of a network of linked oscillations. Wavefronts and bubbles interact at a link. The
link symbol of Figure D.1 is used in the following discussion.

N

L
I
N
K

N

enable rank completeness

closure
Figure D.1.The link symbol

A link presents a D wavefront when asserting D and its closure is enabling D.
A link presents a D bubble when asserting D and its closure is enabling N.
A link presents a N wavefront when asserting N and its closure is enabling N.
A link presents a N bubble when asserting N and its closure is enabling D.

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

D
wavefront

D
bubble

N
wavefront

N
bubble

A D wavefront cannot flow into a N wavefront.
A D wavefront can flow into a N bubble.
A D wavefront should never encounter another D wavefront.
A N wavefront cannot flow into a D wavefront.
A N wavefront can flow into a D bubble.
A N wavefront should never encounter another N wavefront.

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

N
wavefront
blocked

N
wavefront
will flow

D
wavefront
will flow

D
wavefront
blocked

D
wavefront

D
bubble

N
wavefront

N
bubble

D.1. Pipeline flow behavior
A D wavefront will flow into a N bubble. The N bubble flows around the D wavefront becoming a D

bubble. A N wavefront will flow into a D bubble. The D bubble flows around the N wavefront becoming
a N bubble. Another way to say it is that D Wavefronts flow through an empty background of N bubbles
trailing D bubbles followed by N wavefronts flowing through D bubbles trailing N bubbles restoring the
background empty condition of N bubbles through which a successor D wavefront can flow.

A pipeline network is initialized by an initialization signal to an empty background condition of N
bubbles. The initialization signal must be held long enough for the initializing N wavefront to propagate

A Journey Through Computatuion 2/21/25, 11:39 AM

149 Copyright © 2024 by Karl Fant

through the entire pipeline. The initialization signal is the only aspect of network design that is
necessarily associated with an external time referent.
D.1.1. Pipeline initialization:

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

Figure D.2. Pipeline in random power up state with an initialization signal forcing the
converters to assert N.

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

L
I
N
K

N

Figure D.3. A N wavefront presented at the input flows through entire pipeline.

L
I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubble

Figure D.4. Init is released and pipeline becomes filled with N bubbles waiting for a D
wavefront.

D.1.2. Wavefront and bubble flow behavior
In Figure D.5 a D wavefront is presented to the input and flows into the N bubbles through

the entire pipeline leaving behind D bubbles waiting for an N wavefront. It is not accepted at the
output and becomes stalled at the output as a D wavefront, .

L
I
N
K

N

D
wavefrontL

I
N
K

N

D
bubbleL

I
N
K

N

D
bubbleL

I
N
K

N

D
bubbleL

I
N
K

N

D
bubbleL

I
N
K

N

D
bubble

Figure D.5. A D wavefront flows through N bubbles.

In Figure D.6 a following N wavefront is presented to the input and flows into the D bubbles
leaving behind N bubbles. It cannot flow into the D wavefront and is blocked, .

L
I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefrontL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubbleL

I
N
K

N

N
bubble

Figure D.6. A N wavefront flows through D bubbles.

A Journey Through Computatuion 2/21/25, 11:39 AM

150 Copyright © 2024 by Karl Fant

In Figure D.7 successive wavefronts are presented to the input and flow into the pipeline
being successively blocked and filling the pipeline with wavefronts waiting for the first D
wavefront to be accepted.

L
I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefrontL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefrontL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefront

D
wavefront

Figure D.7. Pipeline filled with blocked wavefronts.

In Figure D.8 the first D wavefront is accepted and a D bubble presents at the output of the
pipeline.

L
I
N
K

N

D
bubbleL

I
N
K

N

N
wavefrontL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefrontL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefront

D
wavefront

Figure D.8. Output D wavefront is accepted and D bubble enters pipeline.

In Figure D.9 the N wavefront flows into the D bubble leaving behind an N bubble.

L
I
N
K

N

N
wavefrontL

I
N
K

N

N
bubbleL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefrontL

I
N
K

N

D
wavefrontL

I
N
K

N

N
wavefront

D
wavefront

Figure D.9. N wavefront flows into D bubble.

In Figure D.10 the D wavefront flows into the N bubble leaving behind a D bubble.

L
I
N
K

N
wavefrontL

I
N
K

D
wavefrontL

I
N
K

D
bubbleL

I
N
K

N
wavefrontL

I
N
K

D
wavefrontL

I
N
K

N
wavefront

D
wavefront

NNNNNN

Figure D.10. D wavefront flows into N bubble.

In Figure D.11 the N wavefront flows into the D bubble leaving behind a N bubble. The
rightmost N wavefront flows out of the pipeline leaving behind an N bubble.

L
I
N
K

N
bubbleL

I
N
K

D
wavefrontL

I
N
K

N
wavefrontL

I
N
K

N
bubbleL

I
N
K

D
wavefrontL

I
N
K

N
wavefront

D
wavefront

NNNNNN

Figure D.11. N wavefront flows into D bubble.

A Journey Through Computatuion 2/21/25, 11:39 AM

151 Copyright © 2024 by Karl Fant

In Figure D.12 the D wavefronts flows into both N bubbles leaving behind a D bubbles ...
And so on.

L
I
N
K

D
wavefrontL

I
N
K

D
bubbleL

I
N
K

N
wavefrontL

I
N
K

D
wavefrontL

I
N
K

D
bubbleL

I
N
K

N
wavefront

D
wavefront

NNNNNN

Figure D.12. D wavefront flows into N bubble.

The bubble, alternating between N bubble and D bubble, flows backward through the waiting
wavefronts in the pipeline. Each wavefront progresses one oscillation with each bubble entering
the pipeline and flowing through the wavefronts. As each wavefront flows forward into a bubble
a bubble flows backward around the wavefront. In the absence of bubbles wavefronts do not
flow. In the absence of wavefronts bubbles do not flow.

A Journey Through Computatuion 2/21/25, 11:39 AM

152 Copyright © 2024 by Karl Fant

Appendix E: Initializing a D wavefront in a pipeline
E.

All interaction networks need to be initialized at inception. A pipeline network of linked
oscillations initializes with all conversions forced to N and with completely N presented to the
network inputs which flows through all the links and through each oscillation network to
initialize the entire pipeline network to N or empty. The init signal, which has to be held long
enough for the N conditions presented to the input of the network to propagate through the entire
network, is the only signal in an interaction network with a specific and extrinsic timing
requirement. When the init signal is released, all conversions transition to D filling the network
with N bubbles (Appendix D) enabling the first transition to D wavefront to flow into and
through the network.
E.1. Initializing a D wavefront

Occasionally it is necessary to initialize a D wavefront in a pipeline network otherwise
initialized to all N. An individual closure can be initialized to D or N. Initialization is specified
with D or N in the primitive behavior graphic symbol which is also connected to the init signal.
Initializing a D wavefront in a pipeline involves two consecutive oscillation networks as shown
in Figure E.1. The initializing oscillation network initializes a D completeness wavefront across
the closure flow path. The oscillation networks receiving the initialized wavefront must block
each initialized D with an initialized N to present a N initialization wavefront to the rest of the
pipeline. The closures of the two initializing oscillation networks use uninitialized converters.
When the init signal is released the D wavefront begins spontaneously flowing through the
pipeline.

D Ninitializes to D initializes to N

link

N

link

N

init init

link link link

N

D

N

N

uninitialized
inverter

oscillation network
initializing D completeness

wavefront
regular link

regular link

receiving
oscillation
network

uninitialized
inverter

Figure E.1.Initializing a D wavefront in a pipeline network.

Cover the “allof” to D issue the shared closure

A Journey Through Computatuion 2/21/25, 11:39 AM

153 Copyright © 2024 by Karl Fant

Appendix F: 5 bit Multiply interaction network
F.

The 5bitmul requires two component networks not yet defined halfadd and mul. The
halfadd expression below specifies the halfadd interaction network in the left of Figure F.1.

(halfadd(A/{1 0}/ B/{1 0}/ -> sum/{1 0}/ Cout/{1 0}/)
sum/{1<={[A/0 B/1] [A/1 B/0]}
 0<={[A/0 B/0] [A/1 B/1]} }
Cout/{1<=[A/1 B/1]
 0<={[A/0 B/0] [A/0 B/1] [A/1 B/0]} })

bound reference name

dependency relations

binding portal localities

sum is dependent on the dependency relations of its components, {1 0} on input localities A
and B. Cout is dependent on the dependency relations of its components, {1 0} on input
localities A and B

The mul expression below specifies the mul interaction network in the right of Figure F.1.

(mul(A/{1 0}/ B/{1 0}/ => P/{1 0}/)
 P/{1<=[A1 B1]
 0<={[A/0 B/0] [A1 B0] [A/0 B/1]} })

binding portal localitiesbound reference name

dependency relations

P is dependent on the dependency relations of its components, {1 0} on input locality A and
B.

mul

A/1

A/0

B/1

B/0

11

01

10

00

AB
P/1

P/0

A/1

A/0

B/1

B/0

11

01

10

00

AB

sum/1

sum/0

Cout/1

Cout/0

halfadd
Figure F.1. halfadd and mul component networks

The 5bitmul references component networks fulladd, mul and halfadd all of which are
constant and fulfill the completeness criterion. The 5bitmul expression below specifies the 5 bit
multiply interaction network of Figure F.2.

A Journey Through Computatuion 2/21/25, 11:39 AM

154 Copyright © 2024 by Karl Fant

(5bitmul(A/[4-0] B/[4-0] -> P/[9-0])
 ((C11 C12 C21 C31 C22 C13 C41 C32 C23 C14 C51 C42 C32

C23 C33 C24 C52 C43 C34 C53 C44 C53 C54)/{1 0}/)
 P/[9<=C54
 8<=fulladd(mul(A/4 B/4) C44 C53 => # C/54)
 7<=fulladd(fulladd(mul(A/4 B/3) C43 C52 => # C53) mul(A/3 B/4) C34 => # C/44)
 6<=fulladd(fulladd(fulladd(mul(A/4 B/2) C42 C51 => # C52)

mul(A/3 B/3) C33 => # C43) mul(A/2 B/4) C24 => # C/34)
 5<=fulladd(fulladd(fulladd(halfadd(mul(A/4 B/1) C/41 => # C51)

mul(A/3 B/2) C32 => # C42)
mul(A/2 B/3) C23 => # C33) mul(A/1 B/4) C14 => # C/24)

 4<=halfadd(fulladd(fulladd(fulladd(mul(A/4 B/0) mul(A/3 B/1) C/31 => # C41)
mul(A/2 B/2) C22 => # C32)
mul(A/1 B/3) C13 => # C23) mul(A/0 B/4) => # C/14)

 3<=halfadd(fulladd(fulladd(mul(A/3 B/0) mul(A/2 B/1) C/21 => # C31)
 mul(A/1 B/2) C12 => # C22) mul(A/0 B/3) => # C/13)

 2<=halfadd(fulladd(mul(A/2 B/0) mul(A/1 B/1) C/11 => # C21) mul(A/0 B/2) => - C12)
 1<=halfadd(mul(A/1 B/0) mul(A/0 B/1) => # C11)
 0<=mul(A/0 B/0)

])

binding portal localitiesbound reference name

dependency relations

internal localities

5bitmul inherits locality structure in the same way as the 5bitadd above.

(5bitmul(A[4-0]/{1 0}/ B[4-0]/{1 0}/ => P[9-0]/{1 0}/) (…) ...)

P is dependent on the dependency relations of its components, [9-0] on input localities A and
B and the internal Cxx localities. The detailed relations are too involved to verbalize.

A0B0

A0B1A1B1A2B1A3B1

A1B2 A0B2A2B2

A0B3A1B3

hAA

hA

A

A

hAAA

P/0P/1P/2P/3P/4

A1B0A2B0A3B0A4B0

A0B4

A

A4B1

A3B2A4B2

A3B3A4B3 A2B3

A

A

A

AA

hA

P/5P/6P/7P/8P/9

A1B4A2B4A3B4A4B4

AA AA hA

C11C21C31C41C51

C12C22C32C42C52

C23C33C43C53

C14C24C34C44C54

C13

Figure F.2. 5 bit multiply interaction network.

Each fulladd, halfadd and mul component network in the 5bitmul network is constant and
fulfills the completeness criterion so 5btmul as a whole is constant and fulfills the completeness
criterion. If any part of A or B is not completely formed a component network input will not
completely form, the component network will not transition its output and a part of P will not
transition. If P transitions to completeness it means that the inputs A and B have transitioned to
completeness.

A Journey Through Computatuion 2/21/25, 11:39 AM

155 Copyright © 2024 by Karl Fant

Appendix G: The orphan delay risk
G.

With the emergence of completeness closure and the oscillation network of section 3.7 the
orphan risk can be characterized. The delay risk of the orphan is in the N wavefront not fully
propagating before the next transition to D wavefront arrives at an orphan branch. The next
transition to D wavefront cannot arrive at an orphan branch until the transition to D wavefront is
allowed into the network by the closure. Consequently, successive D wavefronts cannot flow
faster than the oscillation period of the network. The delay risk of the orphan can be evaluated by
determining:

1. that all orphan branches are isolated to a single branch path within the interaction
network and do not propagate through a primitive interaction behavior,

2. That the shortest orphan branch delay contributes to the shortest oscillation period of the
network so the delay risk is how much longer the longest orphan path delay is than the
shortest orphan branch delay,

3. that the orphan delay risk, the shortest orphan branch delay subtracted from the longest
orphan branch delay, is considerably less than the shortest period of the oscillation
network encompassing the orphans ensuring that the longest orphan branch delay will
complete its transition to N before the next wavefront of transition to D can arrive at the
orphan branch.

Orphan branches are local and are a component of the oscillation period. A too long orphan
branch delay can be contrived but, assuming a local uniformity of manufacturing variations over
branches and behaviors, all local component delays will vary similarly and the orphan branch
delays will always be proportionally shorter than the oscillation period. In Figure G.1 the longest
green path has to propagate faster than the shortest purple path.

A Journey Through Computatuion 2/21/25, 11:39 AM

156 Copyright © 2024 by Karl Fant

network oscillation period
orphan branch delay

computation flow
closure flow

initialization signal

C/1

C/0

Ain/1

Ain/0

Bin/1

Bin/0

C.closeinversion
n

init

A/1

A/0

B/1

B/0

Figure G.1.Orphan risk: shortest oscillation period to longest orphan branch delay.

Orphan delays are timing relations relative to local delays within the network in contrast to
timing relations critically relative to a global external time referent or to some indeterminate
environmental delay (isochronic fork). It is generally sufficient to ensure that all orphan branches
do not propagate through a primitive behavior to mitigate the orphan delay risk.

	Chapter 1:	 Subtleties of primitivity
	1.1.	Sequentiality.
	1.2.	QUANDARY 1: Dependency
	1.3.	QUANDARY 2: Primitivity
	1.4.	Concurrency
	1.5.	Boolean logic
	1.6.	QUANDARY 3: Insufficient primitivity
	1.7.	QUANDARY 4: Concurrency myopia
	1.8.	Seeking a sufficient accounting

	Chapter 2:	 Condition Differentiation
	2.1.	Differentness of condition
	2.2.	Sameness of persistence
	2.3.	Place of common association
	2.4.	A familiar example of pure condition interaction: Roman numeral addition
	2.5.	Interlude: Pure condition differentiation

	Chapter 3:	 Association Differentiation
	3.1.	The behavior of statically associated persistences
	3.2.	Primitive interaction behaviors: sufficient expressivity
	3.3.	INTERLUDE: Sufficiently expressive primitivity
	3.4.	The constant network: composing primitive behaviors
	3.5.	INTERLUDE: The constant network
	3.6.	QUANDARY 5: The environment
	3.7.	The oscillation network: self regulation
	3.8.	INTERLUDE: Marking time with the oscillation network
	3.9.	The pipeline network: composing self regulation
	3.10.	INTERLUDE: The pipeline network
	3.11.	The autonomous pipeline network: self control
	3.12.	The embedded pipeline network: the passive environment
	3.13.	INTERLUDE: The autonomous pipeline network
	3.14.	The journey

	Chapter 4:	 Temporal differentiation
	4.1.	The ring network: boundless network, endless time
	4.2.	INTERLUDE: The ring network
	4.3.	The source ring network: making time
	4.4.	The pipeline ring network: from time to time
	4.5.	INTERLUDE: A collision of expression regimes
	4.6.	Removing the exposed binding portal
	4.7.	INTERLUDE: The self determined network
	4.8.	The LFSR network: interacting differentnesses of time
	4.9.	The immersed ring network: engaging the environment
	4.10.	The memory ring network: Stopping time
	4.11.	A network of addressable memory rings: arranging time
	4.12.	A most primitive sequence controller
	4.13.	A quest fulfilled

	Chapter 5:	  The spectrum of Differentiation
	5.1.	The collaboration
	5.2.	A walk along the spectrum
	5.3.	With fifteen available differentness conditions
	5.4.	Constrained to nine available differentness conditions
	5.5.	Constrained to six available differentness conditions
	5.6.	Constrained to three available differentness conditions
	5.7.	Constrained to two available differentness conditions
	5.8.	Constrained to one differentness condition:  			Pure association differentiation
	5.9.	Spectrum summary: The differentness of differentness

	Appendix A: 	Blinded by Elegance:  The Null Convention Logic Library
	A.1.	Null Convention Logic
	A.2.	The strategic error
	A.3.	The conceptual error
	A.4.	The practical error
	A.5.	The technical error
	A.5.1.	The nominal behavior of THXOR
	A.5.2.	The race behavior of THXOR
	A.5.3.	The deadlock behavior of THXOR

	Appendix B: 	Pipeline Performance
	B.1.	Basic pipeline network structure and behavior
	B.2.	Primitive component performance
	B.3.	Network composition
	B.3.1.	Composition performance
	B.3.2.	Further composition
	B.3.3.	Longpipe performance
	B.3.4.	Pipeline performance
	B.3.5.	Performance in an environment

	Appendix C: 	Wavefront Arbitration
	C.1.	The MUTEX
	C.2.	The arbiter
	C.3.	Arbitrating composite wavefronts

	Appendix D: 	Wavefronts and bubbles
	D.1.	Pipeline flow behavior
	D.1.1.	Pipeline initialization:
	D.1.2.	Wavefront and bubble flow behavior

	Appendix E: 	Initializing a D wavefront in a pipeline
	E.1.	Initializing a D wavefront

	Appendix F: 	 5 bit Multiply interaction network
	Appendix G: 	The orphan delay risk

