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Chapter 1:
Subtleties of primitivity 

1
Sequence controlled steps of behavior, considered the fundamental model of computation, 

and Boolean logic, considered the most primitive computational behavior do not provide a 
complete and coherent accounting of computation.

1.1. Sequentiality.
“Computation is the evolution process of some environment by a sequence of 
“simple, local” steps.” 1

Sequential computation is represented one step at a time. Each step is a behavior that receives 
an input from a state environment and returns an output to the state environment evolving the 
state environment step by step. Each step completes and delivers its output before the next step 
begins ensuring that each next step receives a stable input from a stable state environment. 

1.1.1. The innate concurrency of sequentiality
A sequential ordering of steps does not, in itself, specify a computation. A sequence of steps 

has to realize the correct flow of dependency relations through the state environment. 
Dependency of flow relations includes relations that can occur “all at once” or “in any order”. 
The, “all at once”, represents concurrency. The, “in any order”, means that the concurrent steps 
can be mapped to a sequential ordering of steps. But “in any order” also means that there can be 
a multitude of different sequential orderings that correctly realize the flow of dependency 
relations of the computation. Further, there is a multitude of sequential orders that do not 
correctly realize the dependency relations.

A

B

C

D

E

F

G

H

I

dependency specification possible sequences of ABCD
ABCD   BACD   CBAD   DABC
ABDC   BADC   CBDA   DACB
ACBD   BCAD   CABD   DBAC
ACDB   BCDA   CADB   DBCA
ADCB   BDAC   CDAB   DCAB
ADBC   BDCA   CDBA   DCBA

Figure 1.1. Sequencing concurrency

The left of Figure 1.1 represents a network of dependency relations. In the shaded region of 
the network A and B can occur in any order before D. If either A or B occur after D the sequence 
is incorrect. C can occur in any order with A, B and D. The right of Figure 1.1 represents all the 
possible sequences of A, B, C and D. The shaded sequences are the eight sequential orderings 
realizing the correct flow of dependency derived from the similarly shaded portion of the 
dependency network. The unshaded 16 possible sequences are all incorrect (D occurs before A or 
B or both). With such variety of sequence it can be difficult to be confident of the correctness of 
a specific sequential order and even more difficult to reliably perceive incorrectness. The only 
means of differentiating a correct sequential ordering from an incorrect sequential ordering in a 
typically enormous set of possible sequential orderings is to refer to the unique dependency of 
flow representation with its innate concurrent relations.
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1.2. QUANDARY 1: Dependency
Sequential ordering is necessarily derived from dependency relations so the expression of 

dependency relations with their innate concurrency must be considered to be more primitive than 
the expression of sequential order.

1.2.1. The sequence controller
Steps do not sequence themselves. Sequentiality requires a sequence controller that actualizes 

each step in turn, connects it with the state environment and determines its completeness of 
output before beginning the next step. A sequence controller cannot control itself but can be 
represented as a sequence of more primitive steps controlled by a more primitive sequence 
controller forming a hierarchy of sequence controllers such as program, instructions, microcode 
and so on. However, there must be a most primitive sequence controller which cannot itself be 
sequence controlled.

1.3. QUANDARY 2: Primitivity
Sequentiality cannot be primitive. Its most primitive sequence controller must be expressed, 

not in terms of a sequence of steps but directly in terms of dependency relations among primitive 
behaviors which dependency relations include innate concurrency relations.

That sequential interpretation provides a universal realizer of every possible computation 
does not necessarily mean that sequential interpretation represents a primitive essence of 
computation.

1.4. Concurrency
Concurrency relations are conventionally viewed from simply insignificant 

“All we would lose by the omission of "parallel processing" is speed, nothing 
fundamental.” 2

to fundamentally unrealizable.
“The introduction of concurrency into computation opens Pandora’s box to 
release the possibility of non determinacy and a host of other complications, 
including deadlock and livelock .... Events within concurrent systems do not 
necessarily occur at predetermined times, but may occur in different orders 
depending upon the relative speeds of different system parts. The usual 
assumption, which is also physically realistic, is that relative speeds cannot be 
controlled so precisely that the designer or programmer can depend upon them to 
enforce sequencing requirements.” 3

1.5. Boolean logic
The most primitive behaviors are conventionally understood to be Boolean logic behaviors 

because they are primitive to a mathematician, the arbitrarily capable agency at the heart of 
mathematics, who can correctly interpret the behavior of a Boolean network and its concurrent 
relations step by step with her pencil and paper. In the absence of the mathematician, a network 
of Boolean logic behaviors relying on the merits of its intrinsic logical behaviors, does not work.
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Enlivened Boolean functions are continually responsive to their input and are continually 
asserting output dependent on the input. Two behaviors, each presenting an input to a third 
behavior, can behave independently and concurrently with different delays. The two input 
transitions to the third behavior can arrive at different times causing the third behavior to 
temporarily output an incorrect result transition (a glitch). This temporarily incorrect result 
transition will be presented to subsequent behaviors causing them to temporarily transition their 
output to incorrect result transitions which will race ahead though the network of behaviors 
asserting a chaos of incorrect transitions at the output of the network. The network and its 
Boolean behaviors cannot, on their own, determine amidst the chaotic transitioning of incorrect 
results when its input has completely and stably transitioned nor when the network output is 
completed with the correct result of the presented input. This is the Pandora’s box of non 
determinacy mentioned in the quote above.

1.6. QUANDARY 3: Insufficient primitivity
Boolean logic behaviors, which are insufficiently expressive on their own behavioral merits 

to coordinate the innate concurrent relations in a network of dependently related Boolean logic 
behaviors, do not present a viable primitivity.

1.6.1. Hiding the chaos of concurrency
If the inputs to a Boolean logic network are held stably for long enough correct results 

eventually propagate through the behaviors and the network stabilizes asserting the complete and 
correct output for the presented input. The chaotic behavior of a Boolean logic combinational 
network can be hidden and remediated by isolating and bounding it with memories (registers - 
data lifeboats) controlled by a time interval long enough to allow the network to stabilize. At the 
beginning of the time interval an input memory presents the input to the network, the time 
interval waits long enough for the network to settle to a stable output then at the end of the time 
interval an output memory accepts the correct and stable output. The chaotic behavior of the 
Boolean network is isolated and hidden within the time interval and between the bounding 
memories.

Successive time intervals present a sequence of inputs to the network and produce a sequence 
of outputs. The chaotic Boolean logic network with the crutch of the bounding memories and 
time interval becomes a timed sequential step of determined computation.

1.6.2. Sequential steps of hidden concurrency
These memory and time interval bounded Boolean networks are composed into a network of 

bounded Boolean networks all timed with the same time interval long enough to accommodate 
the slowest to stabilize network (critical path). All of the bounded networks controlled by the 
same common time interval, behave concurrently (all at once) within each time interval. With the 
single common time interval precisely controlling the start and end of all the networks, the 
concurrently behaving bounded Boolean networks fulfill the above author’s requirement of 
precisely controlled relative speeds for reliable concurrent behavior. With each successive time 
interval results flow from bounded Boolean network to bounded Boolean network. The innate 
and chaotic concurrency relations isolated inside each bounded Boolean network are sequence 
controlled by the timing interval and the memories. In this way a most primitive sequence 
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1. Avi Wigderson “Mathematics + Computation, The theory revolutionizing technology and science”, 
(Princeton, New Jersey, Princeton University Press, 2019). p. 307.

2. Richard Feynman, “Feynman Lectures On Computation” (Reading, Massachusetts, Addison Wesley, 1996) p 
4.

3. Charles Seitz ed., Resources in Parallel and Concurrent Systems, ACM Press, New York, 1991, introduction, 
page ix.

controller can be realized as a network of bounded Boolean networks all behaving concurrently 
and determinately to realize a single step of sequence control.

1.7. QUANDARY 4: Concurrency myopia
Timed sequence control has vanquished the chaotic concurrency of Boolean networks 

enabling the construction of a most primitive sequence controller. Might sequence control be 
considered necessary and foundational if not primitive?

Yet, even with the veneer of sequence control, the representation of sequenced steps at all 
levels, still derives from and is preceded by dependency relations with their innate concurrency 
and the most primitive sequence controller is realized with time bounded Boolean logic networks 
within each of which lingers the chaotic concurrency of the most primitive dependency relations.

Despite the immense computational success of sequentiality and Boolean logic over the past 
70 years they fail to completely and coherently account for computation. A complete and 
coherent accounting of computation must embrace the primitivity of dependency relations and 
their innate concurrency.

1.8. Seeking a sufficient accounting
The straightforward goal of the journey is to discover an accounting of computational 

interaction that directly expresses dependency flow with its innate primitive concurrency 
relations and which evolves to encompass all forms of computational interaction. An accounting 
that provides a common characterization of interaction whether in a biological cell, in a digital 
computer or in a mathematician’s head. An accounting capable of characterizing the 
mathematician herself as well as what she does with her pencil and paper. An accounting from 
which familiar forms of interaction, Boolean logic with its time interval and sequential 
interpretation with its notion of state, emerge through considerations quite different from those of 
their historic development. An accounting of computational interaction in terms of a primitivity 
complete and sufficient in itself with nothing hidden and in no need of any extrinsic support. 



A Journey Through Computatuion 2/21/25, 11:39 AM

8 Copyright © 2024 by Karl Fant

Chapter 2:
Condition Differentiation

2
The journey of discovery begins with the notion of differentness spontaneously and 

dependently interacting and changing as first principle in contrast to regarding a mathematician 
with pencil and paper as first principle.

2.1. Differentness of condition
Condition is a common term representing differentness. Each differentness is represented as a 

condition that can interact its differentness with one or more other different conditions and 
change condition differentness. A condition is different from all other conditions in its propensity 
to spontaneously interact with specific other different conditions and to not interact with all 
remaining different conditions. Interacting conditions of differentness symmetrically and equally 
appreciating each others differentness by changing is the essence of computational interaction. 
The different after conditions are the appreciation the differentness of the interacting conditions. 
A differentness of condition that never interacts and never changes is not appreciable. A 
differentness of condition that changes spontaneously without interacting is not appreciated.

2.2. Sameness of persistence
Persistence is a common term representing sameness. The sameness of a persistence spans 

and relates a specific after differentness as the appreciation of a specific before differentness of a 
specific interaction change. Without a spanning persistence a newly appearing after differentness 
is not an appreciation of any specific before differentness.

Sameness and differentness are codependent and collaborative. Codependent in the sense that 
sameness presents in relation to differentness and differentness presents in relation to sameness. 
Collaborative in the sense that the spanning sameness of persistence links the changing 
differentness conditions of interaction and the interaction propensities of differentness of 
condition links the sameness of persistences mutually and indefinitely renewing each’s 
expressivity.

For this narrative persistence will be characterized as a carrier of condition differentness that 
asserts one at a time of two or more mutually exclusive condition differentnesses each with a 
specific interaction propensity. When an interaction occurs the persistence changes it asserted 
condition to the interaction result condition linking the after condition with the before condition 
through the sameness of the persistence and ensuring the beforeness and afterness of the 
interacting conditions with its mutually exclusive one at a time assertion of condition.

2.3. Place of common association
Persistences indiscriminately associate in a place of common association which is itself a 

spanning persistence and which might be a gravity well, a cell membrane, a concentration 
gradient, a tide pool, a community and so on. When two or more asserted conditions encounter 
they either interact or do not interact. If the encountering conditions have no propensity to 
interact then nothing happens. Each persistence with its asserted condition moves on with no 
lingering consequences of the failure to interact. If the encountering conditions have a propensity 
to interact the conditions interact with the asserting persistences spontaneously changing their 
asserted condition. A molecule, for instance, is a persistence that asserts a chemical condition 
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that may spontaneously interact with and change its chemical condition only in combination with 
specific other chemical conditions.

The place of common indiscriminate association for this discussion is represented by a 
shaking bag, illustrated in Figure 2.1. The bag prevents contained persistences and their asserted 
conditions from wandering off and prevents external persistences from intruding. The shaking 
ensures that each asserted condition encounters all the other asserted conditions in the bag. 

M

D

C

L

XV

I

C

C

C

X
I

I

XX

I

I

Figure 2.1. Persistences and their conditions agitated in a place of common association.

2.3.1. Interaction dependency
As conditions interact and change the interacting conditions disappear and different result 

conditions with different interaction propensities appear which interact further and change into 
further different result conditions forming progressions of dependent interactions within the bag 
represented by the different conditions and their specific interaction propensities.

2.3.2. Interaction coordination
Interactions coordinate their dependency relations with completeness relations. An 

interaction begins with completeness of input, when all of the interacting conditions are 
sufficiently proximally associated. An interaction is completed when the interacting conditions 
disappear and the interaction result conditions appear. The appearance of an interaction result 
condition is sufficient to imply that the interacting conditions were completely present and that 
the interaction has completed.

2.3.3. Pure condition differentiation
Because all specificity of interaction is in terms of differentness of conditions and their 

interaction propensities this form of interaction is called pure condition differentiation.
The familiar exemplar of pure condition differentiation is proteins in the cytoplasm of a 

biological cell. Each protein molecule is a persistence and the folding of each protein molecule 
manifests two or more unique configuration conditions determining its interaction with other 
molecular conditions. The warm cytoplasm and the cell membrane form the agitating place of 
common association.

2.4. A familiar example of pure condition interaction: Roman 
numeral addition

Pure condition interaction is illustrated with Roman numeral addition considered without the 
subtractive principle: 9 is VIIII instead of IX, 40 is XXXX instead of XL and so on. A Roman 
numeral is represented by the possible conditions: I, V, X, C, D, M. Without the subtractive 
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principle Roman numerals are association independent. Place in relation does not contribute to 
differentiation. The subtractive principle which may have been invented by stone carvers as an 
economy measure is not intrinsic to Roman numerals.1 For example:

XLII = LXII = ILXI = IILX = LIIX = LIXI = IXIL = XILI = XIIL = IIXL = … = 62

Roman numeral addition is expressed with the interaction propensities shown in Figure 2.2. 

Figure 2.2. Roman Numeral interaction fulfillment relations.

The conditions embody the interaction propensities. When two Vs encounter they fulfill the 
interaction relation [V,V] and spontaneously change into X. Given two Roman numerals these 
interaction propensities will reduce them to a minimal single numeral representing their addition. 
The numbers 1878 and 122 are used as example.

MDCCCLXXVIII + CXXII = MM

The two example numerals are placed into a shaking bag as in Figure 2.3 below. The five Is 
will fulfill relation [I,I,I,I,I], and change into a V. There are then two Vs that will change to an X 
resulting in five Xs which will change to an L resulting in two Ls which will change to a C 
resulting in five Cs  which will change to a D resulting in two Ds which will change to an M. 
What remains in the bag are two Ms. There is no interaction propensity with fulfillment [M,M] 
so no more interactions can occur and the addition is completed. Conditions associate, interact 
according to their propensities and the Roman numeral sum appears.

[I,I,I,I,I]  =>  V
[V,V]   =>  X

[X,X,X,X,X]   =>  L
[L,L]   =>  C

[C,C,C,C,C]   =>  D
[D,D]   =>  M
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Interaction propensities
Persistences asserting
Roman numeral conditions
enter the bag.

IIIII -> V

 VV -> X

XXXXX [ L ]

DD -> M

CCCCC -> D

I
II

I I V

V
V X

X X
XX X L

L L C

C
C CC C

D

D D M

 LL -> C

Persistences associate in the shaking bag. Their asserted conditions
fulfill interaction propensities and the indicated condition changes
occur. The addition resolves as a progression of interactions and

condition changes inside the bag.

M

D

C

L

XV

I

C

C
C

X
I

I

X

X

I

I
M

D C
L

X
V

I

C
C

C

X I
I

X
X

I I
M

D
C

L

X V
C

C

C

X V

X
X

M

D
C

L
C

C

C

X

X
X
XX M

D
C

LC
C

C

L
M

D

C
C

C
C
C

M
D
D

M M

 LL -> CIIIII -> V  VV -> X XXXXX -> L

CCCCC -> D

DD -> M

M

D

C

L

XV

I

C

C

C

X
I

I

XX

I

I

The bag closes and shakes

Figure 2.3. Roman numeral addition in shaking bag.

A fully determined numerical interaction occurs as a progression of discriminate interactions 
of different conditions according to interaction propensities while conditions indeterminately 
associate inside the shaking bag

2.4.1. Interaction incompleteness
But the addition interaction is not complete in itself. It cannot, itself, determine when its 

interaction is completed. As with a Boolean logic network the only way to determine the 
progress of the addition is with an external agency which, in this case, must open the bag and 
perform a complicated count of the conditions. When there are four or fewer of I, X, C and one 
or fewer of V, L, D the addition is completed. 

2.4.2. Completeness of expression
Intrinsically determining when a interaction is done requires that there be a necessarily last 

interaction propensity fulfilled. With the present form of the expression there might not even be a 
first interaction. VI + XII = XVIII is done with no interaction behavior at all. There must be a 
completeness of behavior at each stage of interaction to insure that every interaction propensity 
is fulfilled in an orderly progression to the necessarily last interaction.

Completeness of behavior requires a completeness of representation. The first question of an 
addition is, how many Is are present in the bag. The interaction must count the Is and somehow 
determine that it has considered all the Is and has not missed any Is in the bag. This counting can 
be accomplished if the number of Is in the bag to be counted is always the same. This constancy 
of quantity of Is is arranged with buffer conditions such that there is always the same number of 
each condition and its buffer condition in each Roman numeral. The corresponding lower case 
letter will be used as the buffer condition for each numeral condition as shown in Figure 2.4. 
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Figure 2.4. Roman numerals with their associated buffer conditions.

The buffer condition i is used such that there is always exactly four of I and/or i in a Roman 
numeral: iiii, Iiii, IIii, IIIi or IIII. The buffer conditions serve a role similar to zero in place 
value numbers. When two numerals are added there will always be exactly eight of I and/or i. 
The criterion for completeness, the counting of I/i, can now be represented by the completeness 
fulfillment of each I/i Interaction propensity, shown in Figure 2.5 below, which is exactly eight I/
i conditions. Each completeness of association fulfillment is an unordered association of 
conditions. There are no order relationships in the bag. The Interaction propensity fulfillment 
will occur only when the proximal association of all eight conditions is completely formed.

Figure 2.5. Interaction propensities for I,i and V,v.

The result of the interaction of eight I/i is four I/i and one V/v. The one V/v is the carry to the 
V/v interaction. There is one of V/v in each Roman numeral and there will always be a carry 
condition of V or v so there will always be exactly three of V/v present after the carry. The Vv 
Interaction propensity fulillments require three of V/v in Figure 2.5 above ensuring that the V/v 
interaction occurs strictly after the I/i interaction. The V/v interaction produces one of V/v and 
one of X/x.

There will be four of X/x in each Roman numeral so adding two Roman numerals will 
involve eight X/x conditions and the carry X/x condition making exactly nineX/x conditions to 
form the X/x Interaction propensity fulfillments shown in Figure 2.6. Again, because of the carry, 
the X/x interaction will occur strictly after the V/v interaction.

Numeral
condition

I
V
X
J
C
D
M

Buffer
condition

i
v
x
l
c
d
m

Interaction propensities for I,i
[i,i,i,i,i,i,i,i] => [i,i,i,i,v]
[I,i,i,i,i,i,i,i] => [I,i,i,i,v]
[I,I,i,i,i,i,i,i] => [I,I,i,i,v]
[I,I,I,i,i,i,i,i] => [I,I,I,i,v]
[I,I,I,I,i,i,i,i] => [I,I,I,I,v]
[I,I,I,I,I,i,i,i] => [i,i,i,i,V]
[I,I,I,I,I,I,i,i] => [I,i,i,i,V]
[I,I,I,I,I,I,I,i] => [I,I,i,i,V]
[I,I,I,I,I,I,I,I] => [I,I,I,i,V]

Interaction propensities for V,v
[v,v,v] => [v,x]
[V,v,v] => [V,x]
[V,V,v] => [v,X]
[V,V,V] => [V,X]
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Figure 2.6. Interaction propensities for X,x and L,l.

After the X/x interaction there will be three L/l conditions fulfilling the L/l Interaction 
propensities strictly after the X/x interaction. The L/l interaction produces one L/l condition and 
one C/c carry condition.

There will be four of C/c in each Roman numeral so adding two Roman numerals will 
involve eight conditions and the carry condition will make exactly nine C/c conditions to form 
the C/c interaction propensity fulfillments as shown in Figure 2.7. Again, the C/c interaction will 
occur strictly after the L,l interaction.

Figure 2.7. Interaction propensities for C,c and D,d.

After the C/c interaction there will be three D/d conditions fulfilling the D/d Interaction 
propensities strictly after the C/c interaction. The D/d interaction produces one D/d condition 
and one M/m carry condition.

The M/m interaction propensities, shown in Figure 2.8 pose a difficulty because M does not 
have an intrinsic maximal form. One can put as many Ms as one likes in a Roman numeral and 
the only way to pre-determine how many Ms there are is to limit the number of M/ms allowed in 
a Roman numeral. In this discussion the number of M/ms will be limited to five so that, with the 
carry, there are always exactly eleven of M/m. The M/m interaction occurs strictly after the D/d 
interaction and is the necessarily last interaction of the Roman numeral addition. The interaction 
produces five of M/m and the condition Z which indicates the completion of the addition.

Interaction propensities for X,x
[x,x,x,x,x,x,x,x,x] => [x,x,x,x,l]
[X,x,x,x,x,x,x,x,x] => [X,x,x,x,l]
[X,X,x,x,x,x,x,x,x] => [X,X,x,x,l]
[X,X,X,x,x,x,x,x,x] => [X,X,X,x,l]
[X,X,X,X,x,x,x,x,x] => [X,X,X,X,l]
[X,X,X,X,X,x,x,x,x] => [x,x,x,x,L]
[X,X,X,X,X,X,x,x,x] => [X,x,x,x,L]
[X,X,X,X,X,X,X,x,x] => [X,X,x,x,L]
[X,X,X,X,X,X,X,X,x] => [X,X,X,x,L]
[X,X,X,X,X,X,X,X,X] => [X,X,X,X,L]

Interaction propensities for L,l
[l,l,l] => [l,c]
[L,l,l] => [L,c]
[L,L,l] => [l,C]
[L,L,L] => [L,C]

Interaction propensities for C,c
[c,c,c,c,c,c,c,c,c] => [c,c,c,c,d]
[C,c,c,c,c,c,c,c,c] => [C,c,c,c,d]
[C,C,c,c,c,c,c,c,c] => [C,C,c,c,d]
[C,C,C,c,c,c,c,c,c] => [C,C,C,c,d]
[C,C,C,C,c,c,c,c,c] => [C,C,C,C,d]
[C,C,C,C,C,c,c,c,c] => [c,c,c,c,D]
[C,C,C,C,C,C,c,c,c] => [C,c,c,c,D]
[C,C,C,C,C,C,C,c,c] => [C,C,c,c,D]
[C,C,C,C,C,C,C,C,c] => [C,C,C,c,D]
[C,C,C,C,C,C,C,C,C] => [C,C,C,C,D]

Interaction propensities for D,d
[d,d,d] => [d,m]
[D,d,d] => [D,m]
[D,D,d] => [d,M]
[D,D,D] => [D,M]
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Figure 2.8. Interaction propensities for M,m.

2.4.3. The new Roman numeral format
A modified Roman numeral is always exactly twenty conditions: four of I or i, one of V or v, 

four of X or x, one of L or l, four of C or c, one of D or d, and five of M or m. The number one 
is mmmmmdcccclxxxxviiiI. The number zero is mmmmmdcccclxxxxviiii. This is analogous to 
a 32 bit 2s complement binary number which is always 32 bits regardless of its magnitude. 

The Roman numerals. 
MDCCCLXXVIII and CXXII

now become
mmmmMDCCCcLxxXXViIII and mmmmmdCccclxxXXviiII

and the addition becomes:
mmmmMDCCCcLxxXXViIII + mmmmmdCccclxxXXviiII = mmmMMdcccclxxxxviiii.

The addition process accepts two completely represented numerals and produces one 
completely represented numeral preserving the numeral representation convention.

The above numerals are formatted for readability but there is still no intrnsic association 
differentiation.

mmmmMDCCCcLxxXXViIII = mmimVxIMDxICXmXCICcL = … = 1878
The only association relation is that all the conditions are collectively associated at a single 

place of common association.

2.4.4. Order from chaos
As shown in Figure 2.9 the indiscriminately associating conditions of two Roman numerals, 

autonomously add themselves in a dependent progression of proximity of association 
completeness fulfillments and interactions to a necessarily last fulfillment and interaction which 
completes the sum and produces the condition Z singularly indicating the addition is completed. 
The Z condition might open the bag and spill the result or it might perform a coordination duty 
within the bag.

Interaction propensities for M,m
[m,m,m,m,m,m,m,m,m,m,m] => [m,m,m,m,m,Z]
[M,m,m,m,m,m,m,m,m,m,m] => [M,m,m,m,m,Z]
[M,M,m,m,m,m,m,m,m,m,m] => [M,M,m,m,m,Z]
[M,M,M,m,m,m,m,m,m,m,m] => [M,M,M,m,m,Z]
[M,M,M,M,m,m,m,m,m,m,m] => [M,M,M,M,m,Z]
[M,M,M,M,M,m,m,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,m,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,m,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,m,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,m,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,M,m] => [M,M,M,M,M,Z]
[M,M,M,M,M,M,M,M,M,M,M] => [M,M,M,M,M,Z]
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Figure 2.9. Modified Roman numeral addition in shaking bag.

2.5. Interlude: Pure condition differentiation
A pure condition interaction is persistences asserting differentness of conditions with 

different propensities of interaction indiscriminately associating within a single place of common 
association (the shaking bag). Inside the bag there is no agency of central influence and there is 
no agency of explicit control. The persistences and their asserted conditions behave individually 
and independently. The only influence on their behavior is the confinement of the bag and its 
shaking. There is no ambiguous behavior that needs to be isolated or hidden. There is no need of 
any assistance or influence from outside the bag.

2.5.1. Search
The bag is not shaking to perform searches and realize interactions yet its shaking enables 

searches and realizes interactions. A persistence and its asserted differentness condition with its 
specific interaction propensity has no intrinsic agency to perform a search to fulfill its interaction 
propensity yet inside the shaking bag the condition will experience a journey of encountering 
many other conditions with which it does not interact and then find one condition with which it 
does interact. 

2.5.2. Dependency and completeness
Dependency of interaction relations are expressed by the differentness of the conditions and 

their specific propensities to interact with other different conditions. An interaction occurs only 
with complete proximate association of interacting differentnesses which coordinates the 
interaction behaviors. The appearance of the result differentness and the disappearance of the 
interacting differentnesses indicates, that the different interacting conditions were completely 
proximate, that the interaction has completed and that the result differentness is the correct 
resolution of the interacting differentnesses. This is the completeness of input criterion. 

2.5.3. Concurrency
There can be a multitude of pure condition interactions with mutually disjoint condition sets 

and interaction propensities concurrently realizing independent progressions of dependent 
condition interactions in a single frothing sea of conditions. 

2.5.4. Real pure condition expression
Pure condition is the expressional form of a biological cell which is a single place of 

common association filled with thousands of different protein conditions with specific 
interaction propensities supporting the intermingled expression of thousands of different 
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1. See “https://en.wikipedia.org/wiki/Roman_numerals”.  

interactions proceeding concurrently and continually without ambiguity. The cell as a whole in 
complete control of itself. 

2.5.5. Place and time in the shaking bag
There is no referential where or when inside the bag. There is no consistent or coherent 

metric of temporal or spatial relations among the persistences, their conditions of differentnesses 
or among their interactions within the chaos of the shaking bag yet fully determined interaction 
occurs. Trying to relate the bag to an external metric of space or of time contributes nothing to 
either understanding or to realizing pure condition interaction. 

2.5.6. A first principle fulfilled
In a pure condition expression, differentness spontaneously and dependently interacting and 

changing (first sentence of chapter) is a complete and sufficient accounting in itself of its 
interactions with no ambiguous behavior in need of being isolated or hidden and in no need of 
any extrinsic support from outside the bag. 

The journey continues in Chapter 3 exploring the static association of persistences and their 
asserted conditions.
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Chapter 3:
Association Differentiation

3
In Chapter 2 persistences associated indiscriminately and conditions interacted specifically. 

All expression of differentness was in terms of differentness of condition with no differentiation 
in terms of association of persistences. In this chapter persistences will associate specifically and 
conditions will interact indiscriminately (all conditions interact with each other). All expression 
of differentiation will be in terms of differentness of association with no differentiation in terms 
of differentness of condition. Interaction will be determined by direct static association of 
persistences rather than by interaction propensity of conditions. Each persistence will be different 
from all other persistences not by the differentness of the conditions it asserts but by the 
differentness of its place in a network of static association relations. 

3.1. The behavior of statically associated persistences
An individual persistence has no associational structure, is not directional, has no input or 

output, no top or bottom, no right or left. Associated persistences asserting conditions with 
compatible interaction propensities will be continually asserting a condition to each other, each 
continually fulfilling an interaction propensity and continually changing its asserted condition in 
response. Associated persistences whose asserted conditions do not continually and 
indiscriminately interact have no significance.

3.1.1. Undirected continual interaction
If the conditions of associated persistences and their interaction propensities are identical as 

shown at the left of Figure 3.1 then the conditions of the associated persistences will interact 
continually and indiscriminately in all directions even with themselves.

[N,N] -> D
[N,D] -> D
[D,N] -> D
[D,D] -> N

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> D
Y -> N

Figure 3.1. Undirected interaction of associated persistences.

A persistence can avoid interacting with its own conditions by being responsive to one set of 
conditions and by asserting a different set of conditions. But if it associates with a second 
persistence that is responsive to its asserted conditions and which asserts condition to which it is 
responsive, as at the right of Figure 3.1, they are dependent on each other, feed back to each 
other and continually interact with each other.

3.1.2. Directionalizing interaction behavior
To avoid the continual mutual interaction requires a linear association of three persistences 

with complementary condition interaction propensities each responsive to and asserting a 
different set of conditions as illustrated in Figure 3.2. 
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S -> N
T -> D

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> S
Y -> T

BA C

Figure 3.2. Directionalizing the behavior of statically associated persistences.

• Persistence A is responsive only to conditions N and D and asserts only conditions X and Y.
• Persistence B is responsive only to conditions X and Y and asserts only conditions S and T.
• Persistence C is responsive only to conditions S and T and asserts only conditions N and D.
• Persistence C is dependent on persistence B
• Persistence B is dependent on persistence A and not dependent on persistence C
• Persistence A is not dependent on persistence B and not dependent on persistence C.
• The relations of dependency become directionalized.

Conditions N and D asserted by persistence C do not associate to persistence A and do not 
influence the responsive behavior of persistence A. The X and Y conditions and the S and T 
conditions of persistence B are buffering conditions that separate the persistence C assertion of N 
and D from the responsivity of persistence A to N and D.  It does not matter what persistence B’s 
buffering conditions are as long as they connect A and C and are different from N and D.

The linearly associated persistences form a directionalized association interaction 
behavior sensitive to and asserting the same set of conditions N and D. Identical input and 
output conditions are different because they are at different isolated places of association in 
relation to the interaction behavior. The directionalized association interaction behavior 
establishes a new form of representing interaction differentness in terms of differentness of 
place of association.
3.1.2.1. Practical directionalized interaction behaviors

A switch, Figure 3.3a, is a directionalized association interaction behavior. In Figure 3.3 the 
colors of the switches correspond to persistences A, B and C. An electromagnetic switch receives 
an input current condition that influences a magnetic field condition which influences a physical 
position condition which influences an output current condition which is isolated from the input 
current by interaction through two different condition domains.

c. Transistorb. Vacuum tubea. Electromagnetic switch

electromagnet

spring

lever current
source

input current

output
current

current source

input
voltage

output voltage

grid
input

voltage

current source

output current

Figure 3.3. Switches isolate and directionalize condition transition flow.
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An electronic tube, Figure 3.3b receives a voltage condition which influences a charge 
condition on the grid which influences an electron flow condition through the vacuum which 
influences the output voltage condition on the wire which does not feed back to and influence the 
input voltage condition. 

A transistor, Figure 3.3c, receives a voltage condition on the gate influencing the charge 
condition in the channel which influences the electron flow condition through the channel which 
influences the voltage condition at the output which does not feed back and influence the input 
voltage condition. 

A neuron receives input on its dendrites and asserts output on its axon which output does not 
feed back through the neuron to influence its dendrites

3.1.3. Differentiating interaction behavior
Directed interaction behaviors can be characterized in terms of the condition interaction 

propensities embodied by persistence A and the assertions of persistence C. As shown in Figure 
3.4 directed interaction behaviors named “one of” and “all of” are defined in terms of the 
response of persistence A to condition combinations and the condition it asserts which plays 
through to persistence C which asserts the result condition for the interaction behavior.

Each type of interaction behavior can be represented with a unique graphic indicating each 
unique set of interaction propensities as at the bottom of Figure 3.4.

[N,N] -> N
[N,D] -> D
[D,N] -> D
[D,D] -> D

[N,N] -> N
[N,D] -> N
[D,N] -> N
[D,D] -> D

“all of”“one of”
BA Cinput output BA Cinput output

a b c a b c

S -> N
T -> D

[N,N] -> X
[N,D] -> Y
[D,N] -> Y
[D,D] -> Y

X -> S
Y -> T

S -> N
T -> D

[N,N] -> X
[N,D] -> X
[D,N] -> X
[D,D] -> Y

X -> S
Y -> T

Figure 3.4. Basic interaction behaviors

3.1.4. Directed networks of directed interaction behaviors
Since every interaction behavior recognizes and asserts the same set of conditions and 

isolates its output from its input, associated interaction behaviors are assured to interact enabling 
the indiscriminate association of interaction behaviors output to input into directed networks of 
dependent interaction behavior. Dependency networks of directed interaction behaviors can be 
represented by stretching persistence C to associate with persistence A of other behaviors as on 
the left of Figure 3.5. Persistence C can be stylistically extended to represent association as on 
the right.
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Primitive interaction behaviors
associated output to input

C/1

C/0

A/1

A/0

B/1

B/0

a b c

a b c

a b c

a b c

a b c

a b c

Primitive interaction behaviors
associated with extended output

a b c
a b c

a b c

a b c
a b c

a b c

A/1

A/0

B/1

B/0

C/1

C/0

Figure 3.5. Representations of directed networks of interaction behaviors.

3.1.5. Association differentiation
• Each interaction behavior isolates its input from its output.
• The output of each interaction behavior in a network associates only to the inputs of other 

interaction behaviors.
• The D or N condition asserted by each interaction behavior is different from the identical D 

or N condition asserted by every other interaction behavior in the network by virtue of each 
behavior isolating its input from its output as shown in Figure 3.6.

a b c
a b c

a b c

a b c
a b c

a b c

isolated places of
association differentness

isolated places of
association differentness

Figure 3.6. Interaction behaviors isolating different places of association.

3.1.6. Differentiating instances of interaction behavior
The coordination of interaction is accommodated here the same way it was accommodated in 

chapter 2, with completeness of interactive association. In chapter 2 coordination was expressed 
in relation to emptiness with the appearance of proximate completeness of interacting 
differentness conditions initiating an interaction and then the disappearance of the interacting 
differentness conditions and the appearance of the interaction result condition indicating the 
complete fulfillment of the interaction. This appearance and disappearance of completenesses 
bounds and differentiates instances of primitive interaction behavior (section 2.3.2).

For an association interaction behavior, continually presented with input conditions and 
continually asserting its output conditions there is no bounding of interaction conditions. No 
absence or emptiness separating one condition interaction from a next condition interaction as 
there is in the shaking bag. Conditions are continually presented to the input of a behavior and its 
output condition continually responds to its presented input conditions. This poses two 
difficulties. 
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• One: a next presentation of interaction conditions may require two or more inputs to 
transition. They will not transition simultaneously and the output can respond with a 
temporarily spurious condition to an incompletely transitioned input.

• Two: some input presentations may map to the same output condition and the transition of 
presented input from one interaction input to another may not cause the output to transition. 
If the output condition does not transition there is no intrinsic interaction behavior that 
differentiates instances of interaction. 

These difficulties are identical to the Boolean logic difficulties of section 1.5 and, are 
resolved as follows.
3.1.6.1. Define an explicit representation of emptiness

These difficulties are addressed by assigning one condition N to explicitly represent “Not an 
interaction differentness” while assigning all the other available conditions, in this case only D, 
to represent “an interaction Differentness”. Condition N represents the absence of, emptiness of, 
interaction differentness. Condition D represents the presence of interaction differentnesses. A 
transition from N to D represents an appearance of interaction differentness from an absence/
emptiness of interaction differentness. A transition from D to N represents a disappearance of 
interaction differentness into a non differentiating emptiness of interaction differentness.
3.1.6.2. Define two disjoint domains of completeness

Define a representation of “D completeness” which is a pattern of D assertion in a 
background of N assertion.

Define a representation of “completely N” which is all N assertions with no D assertions, i.e. 
completely empty of interaction differentness.

Interaction occurs with the appearance of D completeness.
3.1.6.3. Require monotonic transition between completeness representations

Each interaction behavior will begin with a transition from completely N to D completeness, 
the appearance of completeness of interaction differentnesses. Each interaction behavior will end 
with, a transition from D completeness to completely N, the disappearance of the interaction 
differentnesses. 

The monotonic transitioning between D completeness and completely N shown in Figure 3.7 
unambiguously differentiates successive instances of D completeness. 

D
completeness

completely
N

completely
N

completely
N

completely
N

D
completeness

D
completeness

Figure 3.7. Monotonic transition of condition completeness relations.

3.2. Primitive interaction behaviors: sufficient expressivity
Define primitive interaction behaviors that transition their output only with presentation of 

input completeness fulfilling the completeness of input criterion (section 2.5.1). A primitive 
interaction behavior begins empty with inputs completely N and its output asserting N. When the 
inputs transition to D completeness the output transitions to D which is maintained until the input 
transitions to completely N at which point the output transitions to N which is maintained until 
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the input transitions to D completeness at which point the output transitions to D which is 
maintained until the input transitions to completely N and so on. 

Primitive behaviors fulfilling the completeness of input criterion can be realized with 
primitive behavior interaction propensities arranged according to the interaction tables shown in 
Figure 3.8 which also shows the graphic representation and the textual representation of each 
interaction behavior. The “–” means that no output transition occurs. The transition of the output 
between D and N reflects the transition of the input between D completeness and completely N. 
Enclosing braces { } indicate “one of” related behavior for which D completeness is one input at 
D and the rest at N. Enclosing brackets [ ] indicate “all of” related behavior for which D 
completeness is all inputs at D and none at N. Completely N is the same for all behaviors with all 
inputs at N, empty of interaction differentness.  <= or => indicates “is dependent on”

{A, B}=>Z

D
D

D
N

N
D

D N
B

A

-> Z

D
D

DD
N

DN
D

D D
BC

A

D D
D N

ND
NN

-> Z
D
D

D
N

N
–

– N
B

A

-> Z

D
D

DD
N

DN
–

– –
BC

A

– –
– N

ND
NN

-> Z

{A, B, C}=>Z [A, B]=>Z [A, B, C]=>Z

B
A Z B

A

C
Z B

A Z B
A

C
Z

“one of” “all of”“all of”“one of”

Figure 3.8. Primitive interaction behavior interaction propensities.

The “all of” relation, mutual inclusivity

Z<=[A  B  C] 

If “all of” A and B and C transition from N to D then Z will transition to D. When “all of” A 
and B and C have transitioned to N then Z will transition to N.

The “one of” relation, mutual exclusivity

Z<={A  B  C}

If “one of” A or B or C transitions from N to D then Z will transition to D. If a second input 
transitions to D then Z, already at D, does not transition. When “all of” A and B and C have 
transitioned to N then Z will transition to N.

Primitive interaction behaviors are differentiated only in terms of the appreciation of their 
input to D completeness. The transition of input to completely N is universal for all behaviors. 
The behavior of the primitive interaction behaviors is illustrated in Figure 3.9.
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“all of”

“one of”

D
completeness

completely
N

completely
N

D
N

“one of”

“all of”

one instance of behavior interaction

Figure 3.9. primitive behavior with monotonic completeness transition behavior.

The “all of” behavior is similar to the Muller C element which is generally viewed as a 
binary control operator in contrast to an interaction mapping behavior.1 The “one of” behavior is 
identical to Boolean OR. The derivation of both elements here is quite different from their 
historical development.
3.2.1.1. The difficulties of section 3.1.6 are resolved. 
• Fulfilling the completeness of input criterion a primitive behavior does not assert spurious 

output transitions due to incompletely presented input. 
• Because of the monotonic transitioning between D completeness and completely N and 

fulfillment of the completeness of input criterion (section 3.3.1) every primitive behavior 
interaction is unambiguously differentiated by the transition of its output to D followed by its 
transition to N.

3.2.1. Non interaction behaviors
There are two primitive behaviors that do not participate in the interactions of differentnesses 

but that participate in the coordination of the dependent flow of interaction behavior. 
The first behavior on the left of Figure 3.10 is referred to as conversion because it is used in 

network closure to convert between the two disjoint domains of completeness representation D 
and N (section 3.7). Conversion does not invert between two interaction differentnesses as a 
Boolean logic inversion does and never appears in an interaction dependency relation. The 
inverter symbol is still used because it is convenient and should be easily understood in context. 

The single tilde ~ represents a conversion that is forced to N during initialization to allow an 
initial completely N wavefront to propagate through a network (Appendix D). The double tilde 
~~ represents a conversion that is not forced to N during initialization which is used only when 
initializing to D completeness (Appendix E). 

The second behavior on the right of Figure 3.10 is the mutex/arbiter, represented textually 
as {{   }}, that enforces two otherwise uncoordinated wavefront flows to flow mutually 
exclusively. In Figure 3.10 A flows to A and B flows to B but only “one at a time” turning two 
uncoordinated flows into a coherent “one of” related flow (Appendix C and section 4.9.3). The 
arbiter can be viewed as an enforcing “one of” behavior. The mutex/arbiter is a well understood 
component of asynchronous design.2
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n
init

initializing
conversion

~ {{Ain  Bin => Aout  Bout}}

MUTEX/arbiter
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T
E
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arbiter

conversion

~~

ND
N D

Figure 3.10. Non interacting flow coordination behaviors.

3.3. INTERLUDE: Sufficiently expressive primitivity
Each primitive interaction behavior expresses one primitive step of mapping (interaction), 

condition holding behavior (memory) and input completeness appreciation (coordination). These 
primitive interaction behaviors along with monotonic transitioning between D completeness and 
completely N enable all that follows in terms of association differentiation. A static structure of 
differentness collaborates with a dynamic structure of differentness to stably express 
computation. It will be shown by the end of this chapter that these primitive behaviors are 
sufficiently expressive on their own intrinsic behavioral merits and in no need of any extrinsic 
assistance.

3.3.1. Completeness of input criterion
A primitive behavior transitions its output only when its input is presented with D 

completeness or completely N. The transition of the output implies the presentation of 
completeness of input and the completion of the interaction behavior.

3.3.2. Constant behavior
The primitive interaction behaviors are constant in that they always assert the same output 

differentness for the same presented completeness of input differentness allowing the primitive 
interaction behaviors to be indiscriminately referenced from and copied to anywhere and 
anywhen. In particular, the primitive interaction behaviors can be referenced and copied to 
compose networks of dependently related primitive behaviors. 

3.3.3. The environment
A primitive behavior is entirely dependent on the presentation of input from an environment 

external to itself. If there is no transition of input presented there is no behavior.

By the end of this chapter interactions will behave independently of the environment which 
will no longer have any behavioral responsibility.

The responsible environment
If the input conditions presented by the environment to a primitive interaction 

behavior monotonically transition between D completeness and completely N with an 
appropriate delay between transitions then the output of the primitive interaction 
behavior will monotonically and correctly follow the transitioning of the input.

The environment establishes the presentation of input differentnesses for each 
primitive interaction behavior and establishes the behavior interaction time. The 
mathematician with pencil and paper is an exemplar of a responsible environmental. 
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3.3.4. Primitive behavior space and time
A primitive interaction behavior performs one atomic instance of interaction of differentness 

behavior between atomic places of association in one instance of interaction time represented by 
the transition of a behavior’s output from N to D and back to N. The succession of presentations 
of D completeness and completely N use and unuse the primitive behavior in different instances 
of interaction time extending the representation of differentness of the primitive behavior 
through time.

3.4. The constant network: composing primitive behaviors
Primitive interaction behaviors linearly associated output to input form a network of 

dependency relations among the primitive interaction behaviors that always asserts the same 
output differentness for the same presented input differentness. A constant network is 
indiscriminately referencable from and copyable to anywhere and anywhen. In particular, 
constant networks can be referenced and copied to compose larger constant networks.

3.4.1. Interaction dependency relations
Interaction dependency relations are expressed in terms of mutually inclusivity and 

mutually exclusivity. The completeness relations of mutual inclusivity [ ] (all at a time, “all of”) 
and mutual exclusivity { } (one at a time, “one of”) permeate interaction expression. 

An interaction is a mutual inclusion (input completeness) of mutual exclusivities (individual 
input differentnesses) dependently interacting through a mapping relation to produce a mutual 
exclusivity (output) which proceeds on to participate in the mutual inclusivity of a next 
interaction. 

In the pure condition expression of Chapter 2 each persistence mutually exclusively asserted 
one at a time of a range of possible different conditions. Interaction occurs when persistences 
asserting the interacting conditions are mutually inclusively proximately associated. The 
interaction produces one result differentness condition from a range of mutually exclusive 
possible result differentness conditions which proceeds to mutually inclusively associate with 
other conditions to interact and produce a next mutually exclusive result differentness and so on.

The primitive behaviors are minimal relations of mutual inclusivity and mutual exclusivity 
from which larger relations of mutual inclusivity and mutual exclusivity are constructed. Figure 
3.11 shows a network of dependently associated “one of” and “all of” primitive behaviors.

3.4.2. Differentness of place of association
In a network of primitive interaction behaviors associated output to input, the output of each 

interaction behavior is a unique differentness of place of association within the network as 
illustrated in Figure 3.11 (section 3.1.5). 
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A/1

A/0

B/1
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association differentness
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association differentness

Figure 3.11. Differentness of place of association in a network of primitive interaction 
behaviors associated output to input.

If a primitive interaction behavior asserts condition D it expresses the differentness 
represented by its unique place of association. If a primitive interaction behavior asserts 
condition N it does not expresses the differentness represented by its unique place of association 
which is empty of differentness. 

Condition D is the only condition expressing interaction differentness. There is no longer any 
differentiation of interaction differentness in terms of condition. This is pure association 
differentiation with all interaction differentness represented by differentness of place of 
association and specificity of interaction represented by direct association. This is in contrast to 
pure condition differentiation (Chapter 2) in which all interaction differentness is represented by 
differentness of condition and specificity of propensity of condition to interact.

3.4.3. Localities of interaction differentness
Each place of association differentness is a primitive interaction differentness. Places of 

association differentness are associated to form localities of interaction differentness which are 
the places in the network between the associated primitive behaviors which represent the 
differentnesses that interact through the primitive behaviors. One differentness from a range of 
mutually exclusive interaction differentnesses is asserted when the primitive behavior outputs 
forming a locality transition from completely N to D completeness and then unasserted when the 
primitive behavior outputs transition to completely N. 

A locality represents two differentnesses that determine its significance: 

1. A locality asserts a single differentness from a range of possible mutually exclusive 
differentnesses.

2. A locality represents a unique place of differentness within the association network of 
dependency relations. A same differentness from a range of mutually exclusive 
differentnesses, the number 4 for instance, can be expressed by multiple localities and 
each expression is different by virtue of the differentness of place of association of the 
locality.

A locality’s differentness of  place of association and its asserted differentness together 
represent a unique significance within an interaction.
3.4.3.1. Locality differentness

A, B and C in Figure 3.11 are localities of mutually exclusive differentness each of which 
can express “one of” its mutually exclusively differentnesses “at a time”. Each locality consists 
of two places of association differentness. Each place can assert “one of” conditions D or N. 
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Each locality expresses a mutually exclusive differentness with “one of” its places of association 
transitioning to D and the other place remaining at N (D completeness). A locality is empty of 
differentness when all of its places are asserting N (completely N).

Multi-rail and particularly dual-rail encoding has long been understood as a delay insensitive 
encoding for differentness (information) transfer with “N” typically referred to as a spacer state.3 
It has been less well understood as a fundamental aspect of interaction differentness.

A network of associated primitive behaviors is also a network of interacting localities.
3.4.3.2. Expressing locality differentness

Differentnesses of a locality are expressed in terms of mutually exclusive, “one of”, and 
mutually inclusive, “all of”, withiness relations. For instance the locality named C of Figure 3.11 
can assert “one of” two places of association named 1 and 0 each of which can assert “one of” D 
or N is represented as two “one of” relations expressed as:

C/{1 0}/{D N}

The slash / indicates withiness distribution. The braces { } indicate “one of” related. The 
above expression distributively expands to:  

C/{1/{D N}  0/{D N}}

The three localities A, B and C of Figure 3.11 are expressed as

A/{1 0}/{D N}   B/{1 0}/{D N}   C/{1 0}/{D N}

Since every place of association can only assert D or N the {D N} term is a universal most 
primitive terminal and can be implied with a terminal dangling slash.

A/{1 0}/   B/{1 0}/   C/{1 0}/  

Which expands to:

A/{1 0}/{D N}   B/{1 0}/{D N}   C/{1 0}/{D N}

A, B and C which all have the same locality structure can also be represented as:

(A B C)/{1 0}/    

Which distributively expands to   

A/{1 0}/   B/{1 0}/   C/{1 0}/

and so on.
The differentnesses of a locality are referenced as

A/1   A/0   B/1    B/0 

and so on

E/{3 2 1 0}/

Expresses a locality named E with four mutually exclusive differentnesses named 3, 2, 1 and 
0 represented as four places of association only one of which will assert D at a time. 

Localities with larger ranges of interaction differentness are composed by associating 
localities with small ranges of interaction differentness (section 3.4.8.). 
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Localities mirror the persistences of pure condition differentiation of Chapter 2 as locus of 
interaction transition and bearer of mutually exclusive differentness.

3.4.4. Expressing a constant network
A constant network expression, enclosed in parentheses, includes an expression reference 

name, a binding portal specifying the localities exposed to the external environment with their 
input to output dependency relation, the specification of referenced internal localities and the 
dependency relations among the localities and behaviors of the network.

Template of association network expression

(name (input localities => output localities)
( internal localities)
 dependency  relations )

binding portal localitiesbound reference name

In Figure 3.11 locality A expressing a mutually exclusive differentness and locality B 
expressing a mutually exclusive differentness mutually inclusively associate to interact and 
produce the mutually exclusive differentness of locality C. The expression below completely 
expresses the network. To keep directionality conveniently visible input localities are shown in 
blue and output localities are shown in red. There are no internal localities in this expression. In 
Figure 3.12 the primitive behaviors  “one of” and “all of” are referenced respectively with { } 
and [ ] encompassing a list of input association places composed with nesting relations as with: 

{[A/0 B/1] [A/1 B/0]}

C/1

C/0

A/1

A/0

B/1

B/0

(net (A/{1 0}/  B/{1 0}/ =>  C/{1 0}/)
C/{ 1<={[A/0  B/1] [A/1  B/0]}
        0<={[A/0  B/0] [A/1  B/1]}  } )

binding portal localitiesbound reference name

dependency relations

Figure 3.12. Network expression for Figure 3.11

The expression reference name is net. The binding portal expresses that output locality C is 
dependent on, =>, the input localities A and B. The specific dependency relations of the network 
are expressed by recapitulating the expression of output assertion locality C and nesting within 
the recapitulated expression the dependency relation, <=, for each component of the locality, {1  
0}, on components of input localities A and B in terms of the primitive behaviors “all of” [ ] and 
“one of” { }. For instance, [A/0  B/1] represents an “all of” behavior dependent on inputs A/0 
and B/1. If both A/0 and B/1 assert D then the “all of” relation asserts D. {[A/0 B/1] [A/1 B/0]} 
represents a “one of” behavior dependent on [A/0 B/1] and [A/1 B/0]. If “one of” the relations 
[A/0 B/1] or [A/1 B/0] asserts D then the “one of” relation {[A/0 B/1] [A/1 B/0]} will assert D.

If the term {[A/0 B/1] [A/1 B/0]} resolves to D then C/1 transitions to D. If the term {[A/0 B/
0] [A/1 B/1]} resolves to D then C/0 transitions to D. Only one of the terms will resolve to D. 
The mutual exclusivity of the terms traces back to the mutually exclusivity of the differentnesses 
of locality A, the mutual exclusivity of the differentnesses of locality B and their cross 
association (section 3.4.7). 
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The expression of the localities and their dependency relations map directly to the network of 
Figure 3.11.

3.4.5. The binding portal
There are three forms of dependency association relation. The binding portal serves as an 

association hub expressing all three association relations. 
1. One to one relations

The binding portal allows the network to be referenced externally and to associationally 
bind each portal locality with differently named external locality (section 3.4.5.1).

2. Many to one relations
A binding portal typically maps multiple inputs to a single output (section 3.4.5.2).

3. One to many relations
The binding portal associates each input locality by name correspondence to multiple 
places of association within the dependency expression (section 3.4.5.3).

3.4.5.1. One to one reference association through the exposed binding portal
A network expression is exposed to reference by an external environment through its binding 

portal in terms of its expression reference name and the syntax structure of its binding portal. The 
only name within a network expression that is externally visible is the expression reference 
name. All other names within the expression can only be referenced from within the expression. 
The same names can be reused outside the expression without ambiguity. 

External locality names are bound to internal locality names by corresponding syntax 
structure in relation to the expression reference name. There are three ways of referencing a 
network expression through its binding portal:

with full portal reference,

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)   .....  )

net (X Y => Z)

with locality nesting,

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)   .....  )

Z<=net (X Y)

or with portal nesting.

(net (A/{1 0}/ B/{1 0}/ => C/{1 0}/)   .....  )

A(.....B(......net (X Y)......))

With full portal reference and locality nesting the output locality named C is referenced by 
the external locality named Z which can be further referenced distributing the differentness of 
locality C. Portal nesting is an unnamed one to one relation which does not support further 
reference to and distribution of the differentness of locality C.

All of these variations of reference are used in the examples. 
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3.4.5.2. Many to one association in the binding portal
The many to one association of input to output in the binding portal.

(net (A/{1 0}/  B/{1 0}/ =>  C/{1 0}/)

3.4.5.3. One to many association into the dependency relations of a network
The binding portal distributes the differentness of each of its localities by name 

correspondence association into the expression of dependency relations.

(net (A/{1 0}/  B/{1 0}/ =>  C/{1 0}/)

C/{ 1<={[A/0  B/1] [A/1  B/0]}
        0<={[A/0  B/0] [A/1  B/1]}  } )

binding portal localitiesbound reference name

dependency relations

3.4.5.4. The external environment
A binding portal exposes a constant network to a presentation from an uncharacterized 

environment beyond its binding portal on which presentation the constant network is completely 
dependent for its liveness (no presentation no network behavior), its temporal reference (with the 
monotonic transitions between D completeness and completely N) and to provide variability of 
behavior (The constant network itself is constant. Its behavior varies only with the differentness 
of its presented input). The external environment is in complete control of the constant network 
through its binding portal.
3.4.5.5. Network wholeness

The binding portal bounds the network with input and output and defines its wholeness of 
interaction behavior. This wholeness of network interaction behavior is not a wholeness of 
expression which extends through the binding portal into the environment not accounted by the 
constant network.

3.4.6. Wavefronts of transition
A transition wavefront consists of behaviors transitioning their output in response to 

transitioning of presented input which transitioned outputs are presented to the input of 
subsequent behaviors which transition their output and so on. Flowing wavefronts of transition 
shuttle the weft of transition differentness through the warp of network differentness weaving the 
fabric of computation.

An interaction begins with a transition to completeness of presentation of one or more 
interacting differentnesses to the input of the exposed binding portal of a constant network which 
initiates a wavefront of transition flowing through the network to its binding portal output. This 
wavefront of transition flow from the completeness of presented input to the completeness of 
output must be unambiguous for all possible input presentations and all possible internal delay 
relations.
3.4.6.1. The unambiguous wavefront of transition to D completeness

Figure 3.13 illustrates a transition to D completeness wavefront flowing through the constant 
network of Figure 3.11 followed by the transition to completely N wavefront. The constant 
network begins empty of interaction differentness with all localities completely at N, Figure 
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3.13a. The external environment transitions the input localities from completely N to D 
completeness. A/0 transitions to D forming D completeness for locality A, Figure 3.13b, then B/
1 transitions to D forming D completeness for locality B, Figure 3.13c, forming network input D 
completeness. The inputs are held at D completeness as a wavefront of transitions from N to D 
begins flowing through the network. Because the inputs are held at D completeness, because of 
the completeness behavior of the primitive interaction behaviors and because there are only 
transitions from N to D with no transitions from D to N there are only correct transitions flowing 
through the network. There are no incorrect or spurious transitions: no glitching. 

Due to the cross association, the output assertion of the network C transitioning to D 
completeness, Figure 3.13d, implies that all of the input has transition to D completeness, that 
the consequent transition to D wavefront has propagated through the network and that the 
transitioned output is the correct resolution of the presented input as well as the necessarily last 
transition to completeness of the wavefront flow through the network indicating completeness of 
interaction (section 3.4.7.2). The transition of the output to D completeness corresponds to the Z 
condition of the Roman Numeral example of Chapter 2
3.4.6.2. The unambiguous wavefront of transition to completely N

The transition to D completeness wavefront is followed by the external environment 
presenting a transition to completely N to the input. A/0 transitions to N forming completely N 
for locality A, Figure 3.13e, then B/1 transitions to N forming completely N for locality B, 
Figure 3.13f. The inputs are held at completely N as a wavefront of transitions from D to N 
begins flowing through the network. Again, because the inputs are held at N, because of the 
completeness behavior of the primitive interaction behaviors and because there are only 
transitions from D to N with no transitions from N to D, there are only correct transitions flowing 
through the network. There are no incorrect or spurious transitions: no glitching. 

Again, due to the cross association, when the output of the network C transitions to 
completely N, Figure 3.13g, it implies: that the input transition to N wavefront is complete, that 
the transition to N wavefront has propagated through the network and that the network is 
completely empty of interaction differentness (excepting orphans, see section 3.4.7.1 and 
3.4.7.2).4
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Figure 3.13. Flow of transition wavefronts through the network.

3.4.6.3. Singular appreciability
With unambiguous wavefront flow through the network the transition of the network output 

locality to completeness is the only singularly appreciable event of a network interaction 
marking one instance of interaction and one instance of interaction time. It is the network 
counterpart of a temporal instant. 
3.4.6.4. Multiple inappreciability

All other wavefront transition events in the network, inputs that can present all at once or in 
any order and internal concurrent transition relations with differing delays that can occur all at 
once or in any order are not singularly appreciable but are temporally incoherent in the context of 
the constant network as a whole.
3.4.6.5. Network ephemeral instances of interaction

A constant network can perform only one interaction at a time. All transition behavior in the 
network is subordinate to and dependent on presentation to the binding portal input and its 
consequent wavefront flow through the network. A transition to D completeness wavefront 
flowing through the network from its binding portal input presentation to its binding portal 
output transition to D completeness and flowing out of the network into the external environment 
is one instance of interaction for the network. Interaction result wavefronts don’t necessarily 
end in the external environment. They are just unaccounted by the network after they flow out.

The following transition to completely N wavefront flowing through the network and 
transitioning the output to completely N empties the network of interaction differentness 
retaining no record, no history, of the instance of interaction. 

With each transition to D completeness a network is used. With each transition to completely 
N the network is unused. With the next transition to D completeness the network is reused. Each 
instance of interaction occurs and then irretrievably disappears from the network. 
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3.4.7. Recognizing presented input
To assert an output based on the differentness of its presented input a network must first 

appreciate the presented input differentness. The input to the network forms a locality of 
mutually exclusive differentness composed of the individual input localities. The mutually 
exclusive differentnesses for locality A/{1 0}/ are named 1 and 0. The mutually exclusive 
differentnesses for locality B/{1 0}/ are named 1 and 0. The two inputs cross associate to form a 
composite range of mutually exclusive differentnesses named, 00 01 10 and 11, only one of 
which is presented at a time by the two input localities.

“one of” A/1 or A/0 will assert D and “one of” B/1 or B/0 will assert D. Only one of the 
cross associations will present DD which is appreciated by one of a rank of “all of” behaviors 
searching for the one fulfilling cross association. The one appreciating “all of” behavior, 
recognizing the presented input differentness, will transition its output to D determining whether 
C/1 or C/0 transitions to D.

The output of the rank of “all of” behaviors is itself a locality of mutually exclusive 
differentness which can be named and referenced explicitly expressing the cross association 
search as in Figure 3.14 instead of it being implied in the nesting relations of the network 
dependency expression as in the expression of section 3.4.4. 

cross/0

cross/1

cross/2

cross/3

C/1

C/0

A/1

A/0

B/1

B/0

AB
00

01

10

11

(net (A/{1 0}/  B/{1 0}/ =>  C/{1 0}/)
(cross/{3 2 1 0}/)
cross/{3<=[A/1  B/1]

 2<=[A/1  B/0]
  1<=[A/0  B/1]

 0<=[A/0  B/0] }0
C/{ 1<={cross/2 cross/1}
        0<={cross/3 cross/0}  } )

binding portal localitiesbound reference name

dependency relations

internal localities

Figure 3.14. The network expression with explicitly named cross association locality

3.4.7.1. Search failures - The orphans
As the transition to D wavefront propagates through a cross association search there are 

ineffective search branches that fail to form cross association completeness which are called 
orphans because they have lost their relations. In Figure 3.15a the effective search branches of 
the transition to D completeness wavefront are highlighted in purple and the ineffective orphan 
branches of the transition to D completeness wavefront are highlighted in green.
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Figure 3.15. The orphans.

When the inputs presenting D completeness transition to completely N a wavefront of 
transition to completely N propagates through the constant network. When C transitions to 
completely N it implies that the input presentations have transitioned to completely N and that 
the effective search branches of the transition to D wavefront have transitioned to N but it does 
not imply that the ineffective orphan branches have transitioned to N which they may not have as 
in Figure 3.15b.

There must be an assumption that every orphan branch will transition to N before the next 
transition to D wavefront arrives at the branch. If the next transition to D wavefront arrives 
before the orphan branches transition to N the search is corrupted as in Figure 3.15.c. The 
differentnesses of locality C should never both be D. If the orphans transition to N before the 
next transition to D wavefront arrives as in Figure 3.15d the next transition to D wavefront is not 
corrupted and the result will be as in Figure 3.15 e.

It is shown in Appendix G, that if orphan paths are isolated to a branch and do not propagate 
through a primitive interaction behavior then orphan branches will always transition to N well 
before the next transition to D wavefront can arrive at the branch.

The orphan is similar to the Martin notion of the isochronic fork which has a more stringent 
relative delay requirement because it relates to undefined external relationships of which worst 
case behavior must be assumed.5 The orphan delay sensitivity is less stringent because it relates 
well defined internal relationships.

Notice that in the pure condition expression of Chapter 2 search failures to form interactive 
completeness do not have lingering implications. A persistence and its asserted condition simply 
do nothing and continue searching (Section 2.3).
3.4.7.2. The completeness of input criterion

The completeness of the output must imply the completeness of all of the presented input. 
The primitive behaviors fulfill the completeness of input criterion but a constant network does 
not fulfill the completeness of input criterion by virtue of its composition with completeness of 
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input fulfilling primitive behaviors. There can be networks that do not fulfill the completeness of 
input criterion.

C/1

C/0

A/1

A/0

B/1

B/0

C/1

C/0

A/1

A/0

B/1

B/0

Figure 3.16. Fulfilling and not fulfilling the completeness of input criterion

The network on the left of Figure 3.16 fulfills the completeness of input criterion. The 
network on the right performs the same interaction mapping behavior asserting the correct result 
but it does not fulfill the completeness of input criterion. The output C/0 can transition to D with 
just one input transitioned to D completeness.

The cross association not only recognizes the presented input but demands the completeness 
of the presented input. This demand for completeness of input ensures that the asserted output of 
the network will not transition until the input is completely presented. The singular transition of 
the network output to completeness indicates that the input of the network has transitioned to 
completeness, that the consequent wavefront has propagated completely through the network and 
that the asserted output is the correct result for the presented input for both the transition to D 
completeness and the transition to completely N.

3.4.8. Composing larger localities of interaction differentness
The cross association search in which two input localities each with a small range of 

mutually exclusive differentnesses mutually inclusively combine to form a single locality with a 
larger range of mutually exclusive differentness inspires the means of expressing localities with 
large ranges of mutually exclusive differentness in terms of mutually inclusive combinations of 
localities with small ranges of mutually exclusive differentness. A place value number, for 
instance, is a locality of mutually inclusive range, “all of”, [ ] range of places each with a 
mutually exclusive, “one of” { } range of digit diferentnesses.

A two bit binary number with a range of 4 mutually exclusive differentnesses is expressed as:

twobit/[1 0]/{1 0}/     which expands to     twobit/[1/{1 0}/   0/{1 0}/]   which expands to
twobit/[1/{1 0}/{D N}    0/{1 0}/{D N} ]      which expands to
twobit/[1/{1/{D N} 0/{D N}}    0/{1/{D N} 0/{D N}} ]

Examples of two bit locality are qtob/B and btoq/A in section 3.4.9. 
A five bit binary number with a range of 32 mutually exclusive differentnesses is:
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fivebit/[4-0]/{1 0}/      which expands to       fivebit/[4 3 2 1 0]/{1 0}/     which expands to
fivebit/[4/{1 0}/   3/{1 0}/   2/{1 0}/   1/{1 0}/   0/{1 0}/]       which expands to
fivebit/[4/{1 0}/{D N}   3/{1 0}/{D N}   2/{1 0}/{D N}   1/{1 0}/{D N}   0/{1 0}/{D N}]

which expands to
fivebit/[4/{1/{D N} 0/{D N}} 

  3/{1/{D N} 0/{D N}}  
  2/{1/{D N} 0/{D N}}  
  1/{1/{D N} 0/{D N}}  
  0/{1/{D N} 0/{D N}}]

and so on. An example of five bit locality is fivebitadder/A in Section 3.4.10.2.
Bits are referenced as

twobit/1   fivebit/4    fivebit/3

Bit differentnesses are referenced as

twobit/1/0   fivebit/4/1    fivebit/3/0

and so on.

3.4.9. Composing larger constant networks
Larger constant networks are composed from smaller constant networks by associating 

binding portal output to binding portal input. The first example is a composition of two 
component constant networks. Network btoq converts a two digit binary radix 2 representation 
to a one digit quaternary radix 4 representation. Network qtob converts quaternary back to 
binary.
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A/1/0

A/0/1

A/0/0

B/3

B/2

B/1

B/0

btoq binding portal localitiesbound reference name

dependency relations

(btoq(A/[1 0]/{1 0}/ => B/{3 2 1 0}/)
B/{3<=[A/1/1  A/0/1]
      2<=[A/1/1  A/0/0]
      1<=[A/1/0  A/0/1]
      0<=[A/1/0   A/0/0]  }   )

The components of locality B/[3 2 1 0] are dependent on relations among components of 
input locality A[1 0]/{1 0}. 

B/1/1

B/1/0

B/0/1

B/0/0

qtob
A/3

A/2

A/1

A/0

(qtob(A/{3 2 1 0}/ => B/[1 0]/{1 0}/)
B/[ 1{1<={A/3  A/2}
          0<={A/1  A/0}}
       0{1<={A/3  A/1}
          0<={A/2  A /0}}   ]    )

binding portal localitiesbound reference name

dependency relations

The components of locality B/[1 0]/{1 0}, are dependent on relations among components of 
input locality A[3 2 1 0]. 

The two component constant networks are composed into a larger constant network named 
biggernet by representing the dependency relation between binding portals with portal nesting, 
locality nesting or full portal reference.

Composing with portal nesting and locality nesting

(biggernet(X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/)
Z<=qtob(btoq(X))  )

bound reference name

dependency relations

binding portal localities

Composing with locality nesting

(biggernet (X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/) (Y/{3 2 1 0}/)
Y<=btoq(X)
Z<=qtob(Y)  )

bound reference name

dependency relations

binding portal localities internal localities
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Composing with full portal reference

(biggernet (X/[1 0]/{1 0}/ => Z/[1 0]/{1 0}/) (Y/{3 2 1 0}/)
btoq(X => Y)
qtob(Y => Z) )

bound reference name

dependency relations

binding portal localities internal localities

Locality Z as a whole is dependent on the asserted differentness of qtob which is dependent 
on the asserted differentness of btoq which is dependent on the presented differentness of X as a 
whole. The intermediate locality Y is also dependent as a whole.  All three of the above 
dependency expressions specify the constant network of Figure 3.17.

X/1/1

X/1/0

X/0/1

X/0/0

Y/3

Y/2

Y/1

Y/0

Z/1/1

Z/1/0

Z/0/1

Z/0/0

btoq qtob

Figure 3.17. Composed constant network.

3.4.9.1. Associating exposed binding portals
When binding portals are associated a portion of the binding portals and a portion of the 

previously uncharacterized external environments (section 3.4.5.4) just beyond the exposed 
binding portals become incorporated into and fully characterized within the composite network. 
The unassociated portions of the binding portals form the exposed binding portal of the new 
composite network as a whole which retains the singular appreciability of its interaction as a 
whole. The newly component networks become subordinate to and dependent on the new 
exposed binding portal and its input wavefront of transition for their liveness and time (section 
3.4.9.8). 

No matter how big and complex a composed constant network becomes it never outgrows the 
need for an exposed binding portal to an uncharacterized external environment in complete 
control of the constant network (section 3.4.5.4).
3.4.9.2. Locality correspondence

When an output locality of one network is associated to an input locality of another network 
the structure of the associated localities must correspond exactly in that they effectively express a 
same single locality, just with different names. The structure of locality Z must match the 
structure of locality qtob/B. The structure of locality X must match the structure of locality btoq/
A. The input locality structure of locality qtob/A must match the corresponding nested output 
locality structure of btoq/B  to which the intermediate locality Y must also correspond.
3.4.9.3. Inheritance of locality structure

One approach to expressing locality structure correspondence is to require that all locality 
expressions be fully specified at all levels and that the structure of all dependently related 
localities correspond. Another approach is to allow a locality to be referenced by name only and 
to inherit its structure from an already fully expressed reference to the common locality. There 
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can be multiple references to the same locality and they must all correspond. If some references 
are partial they can be filled in from other references. The references among themselves must 
compose to a single expression of the locality. The biggernet dependency expression above can 
be rendered as:

(biggernet (X -> Z)  
     Z<=qtob(btoq(X))   )

Z inherits locality structure from qtob/B/[1 0]/{1 0}/ resulting in 

Z/[1 0]/{1 0}/

X inherits its locality structure from  btoq/A/[1 0]/{1 0}/ resulting in 

X/[1 0]/{1 0}/

biggernet expanded with the inheritance is

(biggernet (X/[1 0]/{1 0}/ -> Z/[1 0]/{1 0}/)  
     Z<=qtob(btoq(X))   )

The biggernet dependency expression can also be rendered as:

(biggernet (X -> Z)  (Y)
    Y<=btoq(X) 
    Z<=qtob(Y)    )

with the inheritance including Y inheriting from btoq/B and from qtob/A:

(biggernet (X/[1 0]/{1 0}/ -> Z/[1 0]/{1 0}/)  (Y/{3 2 1 0}/)
    Y<=btoq(X) 
    Z<=qtob(Y)    )

Inheritance simplifies expression and reduces opportunities for errors.
3.4.9.4. Composing constancy and completeness behavior

If each component constant network of a composite constant network is constant (section 
3.4) and fulfills the completeness of input criterion (section 3.4.7.2) then the composite constant 
network as a whole will be constant and fulfill the completeness of input criterion. The point is 
illustrated in Figure 3.18 showing a larger network composed with the network of Figure 3.11 
copied three times. 

The component network expression is:

(net(A/{1 0}/  B/{1 0}/ => C/{1 0}/)
C/{1<={[A/0 B/1] [A/1 B/0]} 
     0<={[A/0 B/0] [A/1 B/1]} }   )

The composed network expression is:

(bignet(W X Y Z => C)    
C<=net(net(W X) net(Y Z))   )

Which expands with inheritance to:
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(bignet(W/{1 0}/ X/{1 0}/ Y/{1 0}/ Z/{1 0}/ => C/{1 0}/)    
C<=net(net(W X) net(Y Z))   )

C
B

A completeness of C indicates
completeness of A and B

completeness of B indicates
completeness of Y and Z

completeness of A indicates
completeness of W and X

completeness of C indicates completeness of W, X, Y AND Z

A/1

B/1

A/0

B/0

W/1

W/0

X/1

X/0

Y/1

Y/0

Z/1

Z/0

C/1

C/0

N
D

Figure 3.18. The composition of completeness relations in bignet.

3.4.9.5. Constancy
The completeness of C is dependent through net C on the completeness of A which is 

dependent through net A on the completeness of W and X and on the completeness of B through 
net B which is dependent on the completeness of Y and Z. If A is constant in relation to W and 
X and B is constant in relation to Y and Z and C is constant in relation to A and B then C is 
constant in relation to W, X, Y and Z.
3.4.9.6. The completeness of input criterion

In Figure 3.18 the completeness of C implies the completeness of its two inputs A and B. 
The completeness of A implies the completeness of W and X. The completeness of B implies the 
completeness of Y and Z. Then the completeness of C implies the completeness of W, X, Y and 
Z. If any of W, X, Y and Z are not completely transitioned C will not be completely transitioned. 
This is the case for both the transition to D completeness and for the transition to completely N.
3.4.9.7. Concurrency

The transition to completeness of localities A and B are singularly appreciable events in 
relation to net A and net B respectively. However in relation to bignet they are independent and 
concurrent. The concurrent behaviors of net A and net B  are coordinated by the completeness 
behavior of net C. Figure 3.18 illustrates a transition to D presentation that is not yet complete. 
W, X and Y have transitioned to D completeness but Z has not yet transitioned. C will transition 
to D completeness only after Z transitions to D completeness.
3.4.9.8. Instances of interaction, wholeness and chaos

As constant networks are composed into larger composite constant networks the newly 
component networks become dependent on the wavefront of the composite network for their 
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input presentation. While each component network retains the same singularity of behavior in its 
own local context that it exhibited as a stand alone network each component singularity of 
behavior is now one singularity among many in the composite network as a whole. As an 
interaction wavefront flows through a composite network each component network and each 
component primitive behavior appreciates its own output transition to completeness marking its 
own local instance of interaction. Even though these instances of component interaction are all 
subordinate to and dependent on the flow of the composite network wavefront and are 
determined by dependency relations that converge to transition to completeness of the output 
locality of the composite network there is no singularly coherent relation among the collective 
component transition behaviors. The flowing wavefront that produces a singular transition event 
for the network as a whole (section 3.4.6.3) produces an incoherent chaos of local component 
events in relation to the network as a whole.

As a constant network grows larger the extent of this internal incoherence increases within 
the network while the transition to completeness of composite network’s output locality remains 
the only singularly appreciable behavior in relation to the network as a whole marking one 
instance of interaction (sections 3.4.5.5 and 3.4.6.4). 

3.4.10. 5 bit adder constant network
The 5bit addition example illustrates a more complex constant network, that fulfills the 

completeness of input criterion and which can be indiscriminately referenced and copied.
3.4.10.1. component

The first step is to express the full adder and compose a 5 bit number locality then to 
compose the 5 bit adder in terms of the full adder and 5 bit number localities.

The fulladd expression specifies the fulladd dependency network in the left of Figure 3.19.

(fulladd(A/{1 0}/  B/{1 0}/  Cin/{1 0}/ => sum/{1 0}/ Cout/{1 0}/)
sum/{1<={[A/1  B/0  Cin/0] [A/0  B/1  Cin/0] [A/0  B/0  Cin/1] [A/1 B/1  Cin/1]}
           0<={[A/0  B/0  Cin/0] [A/1  B/1  Cin/0] [A/0  B/1  Cin/1] [A/1  B/0  Cin/1]} }
Cout/{1<={[A/1  B/1  Cin/0] [A/0  B/1  Cin/1] [A/1  B/0  Cin/1] [A/1  B/1 Cin/1]}
            0<={[A/0  B/0  Cin/0] [A/1  B/0  Cin/0] [A/0  B/1  Cin/0] [A/0  B/0  Cin/1]} }   )

bound reference name

dependency relations

binding portal localities

sum is dependent on the dependency of its components, [1 0] on input localities A, B and 
Cin distributed by the binding portal. Cout is dependent on the dependency of its components, 
[1 0] on input localities A, B and Cin distributed by the binding portal.
3.4.10.2. Composition

With fulladd an expression is encountered with two output assertions. This poses a difficulty 
with representing dependency with portal nesting as the portal nesting relation is one to one. Two 
versions of fulladd can be expressed, one with a sum output and one with a Cout output each of 
which can then be nested. Another approach with full portal reference is to designate the 
dependency of one output as nested with # in its syntactic position and to designate the 
dependency of the other output by name correspondence with a name in its syntactic position.

In the references to fulladd in the 5bitadder expression the dependency relation of the 
assertion locality sum is designated to be nested, #, and the dependency relation of the assertion 
locality Cout is represented with name correspondence, carry/x.
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The 5bitadder expressed in terms of fulladd and the structure of the 5 bit number locality.

(5bitadder( A/[4-0] B/[4-0] Cin =>  sum/[4-0] Cout)
(carry/[5-1]/{1 0}/)
sum/0<=fulladd(A/0  B/0  Cin => #  carry/1)
sum/4-1<=fulladd(A/4-1 B/4-1 carry/4-1 =>  # carry/5-2)
Cout<=carry/5      )

bound reference name

dependency relations

binding portal localities

internal localities

3.4.10.3. Inheritance
The locality expressions A/[4-0], B/[4-0], sum[4-0] and Cout, because they do not include 

the terminal dangling / or /{D N}, are not complete. A/[4-0] just specifies “all of” five things 
named 4, 3, 2, 1, and 0. What the things are will be inherited by reference.

Each referential A/4-1 expands to A/4  A/3  A/2  A/1 with each A/x referencing an instance 
of fulladd. Each instance of A/x corresponds to fulladd/A and inherits from fulladd/A 
completing the referencing locality. The locality expression A[4-0] becomes A[4-0]/{1 0}/  
completely representing a 5 bit binary number. The inheritance could have been A[4-0]/{2 1 0}/ 
representing a five trit number or A[4-0]/{3-0}/ representing a five quat number.

The inheritance expansion from fulladd

(5bitadder( A/[4-0]/{1 0}/ B/[4-0]/{1 0}/ Cin/{1 0}/ =>  sum/[4-0]/{1 0}/ Cout/{1 0}/)
(carry/[5-1]/{1 0}/)
sum/0<=fulladd(A/0  B/0  Cin => #  carry/1)
sum/4-1<=fulladd(A/4-1 B/4-1 carry/4-1 =>  # carry/5-2)
Cout<=carry/5      )

bound reference name

dependency relations

binding portal localities

internal localities

sum/[4-0] expands to sum/4, sum/3, sum/2, sum/1 each referencing an instance o fulladd. 
The above expression expands to:

(5bitadder( A/[4-0]/{1 0}/ B/[4-0]/{1 0}/ Cin/{1 0}/ =>
sum/[4-0]/{1 0}/ Cout/{1 0}/)

(carry/[5-1]/{1 0}/)
[sum/0<=fulladd(A/0  B/0  Cin => #  carry/1)
sum/1<=fulladd(A/1  B/1 carry/1 =>  # carry/2)
sum/2<=fulladd(A/2  B/2 carry/2 =>  # carry/3)
sum/3<=fulladd(A/3  B/3 carry/3 =>  # carry/4)
sum/4<=fulladd(A/4  B/4 carry/4 =>  # carry/5) ]
Cout<=carry/5      )

bound reference name

dependency relations

binding portal localities

internal localities

3.4.10.4. Adder Network
The above expressions map to the 5bitadder constant network in the right of Figure 3.19. 

The 5 bit adder constant network is composed in terms of fulladd component constant networks. 
The 5 bit number localities are composed in terms of 1 bit digit localities.
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fulladd
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B/0
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carry/3

carry/4

carry/5
Cout

Cin
5bitadder

Figure 3.19. Fulladd network and 5 bit adder network.

3.4.10.5. Constancy and completeness
Each fulladd is constant and fullfils the completeness criterion. Each successive fulladd in 

the carry chain of 5bitadder requires the predecessor carry to meet completeness of input to 
transition its output. If any part of A or B is not complete then at least one fulladd will not 
achieve input completeness, not transition its sum and at least one part of the 5bitadder sum 
will not transition to completeness. If the 5bitadder sum transitions to completeness it implies 
that A and B and Cin have transitioned to completeness fulfilling the completeness criterion for 
the network as a whole.

The expression of a 5 bit multiplier constant network is presented in Appendix F.

3.5. INTERLUDE: The constant network
A constant network is a network of dependency relations among primitive behaviors and 

localities of differentness with the primitive behaviors linearly and progressively associated 
output to input i.e. no circular or feedback associations (section 3.4.2). It is constant in that it 
always asserts the same completeness of output differentness for the same presented 
completeness of input differentness (section 3.4). It fulfills the completeness of input criterion in 
that the transition of its output to completeness implies that the presented input has transitioned 
to completeness, that the interaction is complete and that the output is the correct result for the 
presented input (section 3.4.7.2). It is indiscriminately composeable in that it, can be referenced 
from and copied to anywhere and anywhen, in particular to compose bigger constant networks 
(section 3.4.9). 

A constant network manifests interaction as wavefronts of differentness transition flowing 
through the network coordinated in terms of completeness relations ( section 3.4.6). A wavefront 
is initiated by the transition of input presented from an external environment to an exposed 
binding portal which bounds the network with input and output ports (section 3.4.5). The 
constant network is subordinate to and is controlled by the input presented from the external 
environment which provides its source of liveness (with presentation), determines its temporal 
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instance of interaction (with the monotonic transitions between D completeness and completely 
N) and provides its source of variability of behavior (The constant network itself is constant. Its 
behavior varies only with the differentness of its presented input). 

By the end of this chapter the network will be in complete control of itself in relation to a 
passively indifferent environment.

3.5.1. Constant network space
The constant network bounded by its exposed binding portal is the interaction space.

3.5.2. Constant network time
A constant network can perform only one interaction at a time. The transition of the its output 

locality to D completeness implying that the presented input is complete and that the output is 
the correct result of the presented input is the only singularly appreciable network behavior 
bounded by the exposed binding portal and framed by transition to completely N wavefronts 
coherently marking one instance of interaction and one instance of interaction time for the 
network as a whole (sections 3.4.6.5 and 3.4.6.3). 
3.5.2.1. Extending association differentness through time

Even if successive interactions are identical in all aspects of transition behavior the 
interactions are different by virtue of differentness of instances of interaction time. Each instance 
of interaction, each reuse of a constant network, extends its expression of differentness of 
interaction through time. This is temporal differentiation (Chapter 4).
3.5.2.2. Ephemeral time

However, these instances of interaction are ephemeral (section 3.4.6.5), disappearing from 
the network, never associating and never interacting in the context of the network which cannot 
account this extension of expression of differentness of interaction.
3.5.2.3. Interaction incoherence

Constant network individual inputs can transition to completeness in varying orders 
including all at once. Wavefront transitions flowing through the network concurrency relations 
with varying delays can transition in varying orders including all at once (section 3.4.6.4 and 
3.4.9.8). There is no singular referent of time or space that coherently relates them. Wavefront 
flow through the network is coordinated in terms of dependency completeness relations not in 
terms of temporal relations or spatial relations.
3.5.2.4. Wholeness

The exposed binding portal bounds the network providing its liveness and time and realizing 
the network’s reuse determines the wholeness of the network, its instances of interaction and of 

The responsible environment
For a constant network to behave the environment is still required to monotonically 

transition inputs to the network with an appropriate delay between transition to D 
completeness and transition to completely N to allow each consequent transition wavefront to 
flow completely through the network. This responsibility is now relegated to the input 
presentation of the exposed binding portal of the constant network as a whole. If fulfilled 
for the constant network as a whole then the monotonic transitioning and delay requirements 
for the primitive interaction behaviors and component constant networks within the composite 
constant network are also fulfilled.



A Journey Through Computatuion 2/21/25, 11:39 AM

45 Copyright © 2024 by Karl Fant

interaction time (sections 3.4.5.5 and 3.4.9.8). This wholeness of constant network is not 
wholeness of expression which leaks through the binding portal into the external environment 
not accounted by the constant network.

3.5.3. Nothing new
A constant network is a linear progression of specifically interacting differentnesses 

represented as a directed network of dependency relations among the primitive behaviors defined 
in section 3.2. Nothing new has been introduced either abstractly or substantially.

3.5.4. The transcendental view
Because a constant network always asserts the same result differentness for the same 

presented input differentness, a constant network, however complex, can be abstractly 
characterized as a single step mapping transcending and ignoring its internal structure and 
behavior which includes intrinsic concurrent dependency relations. This equates the network 
with a single step, single place primitive behavior. This reduction of complexity to primitivity 
rather overlooks the emergence of complexity from primitivity.

3.6. QUANDARY 5: The environment
On the one hand the external environment can be incorporable into a constant network. On 

the other hand the external environment is never fully incorporated. What and where is this 
inscrutable external environment that is in complete control of the constant network, residing 
always on the other side of its exposed binding portal, undoubtably there, but always receding 
just beyond grasp like the never findable end of the rainbow?

This binding portal exposed to an uncharacterized environment is intrinsic to constant 
networks. If a constant network were not completely dependent on its presented input it would 
not be indiscriminately referenceable and copyable. But the quandary remains. Key aspects of a 
constant network, its variability of behavior, its time and its very liveness lie beyond its 
expressivity. 

3.7. The oscillation network: self regulation
A constant network fulfilling the completeness of input criterion can use the completeness 

transitioning of its output to self regulate wavefront flow into the network. In Figure 3.20 the 
completeness of the output transition (in this case the transition of “one of” C/0 or C/1 to D or 
the transition of C to “all of” N) is appreciated by a “one of” behavior which reduces the 
completeness of output to a single place of association C.comp with condition D representing D 
completeness and condition N representing completely N. C.comp  is the singular appreciation 
of the singularly appreciable completeness of the output locality. This singular appreciation of 
completeness of interaction corresponds to the Z condition of the Roman numeral example of 
Chapter 2 (section 2.4.4).
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Figure 3.20. Self regulating oscillation network.

The dependency relations for appreciating and reducing the completeness of a locality to a 
single place of association are contained in the expression of each locality (section 3.9.2).

3.7.1. Regulating network input
The appreciation of output completeness C.comp  is converted ~C.comp=>C.close and 

closes with the input through “all of” behaviors to allow the next transition wavefront into the 
network. With the network empty and its output completely N C.comp will be N and 
~C.comp=>C.close will be D which will enable a wavefront of transition to D completeness to 
flow through the rank of “all of” behaviors into the constant network. C.close will remain D 
with the “all of” behaviors maintaining the D completeness wavefront until the wavefront has 
propagated all the way through the network and transitioned the output to D completeness. If Ain 
and Bin transition to completely N they will wait for C.comp to transition to N.

When the output transitions to D completeness C.close transitions to D and 
~C.comp=>C.close transitions to N allowing a transition to completely N wavefront into the 
constant network. If the input is not completely N the rank of “all of” behaviors will wait for the 
input to transition to completely N. C.close will remain N with the “all of” behaviors 
maintaining the N wavefront until the wavefront has propagated all the way through the network 
and transitioned the output to completely N. If Ain and Bin transition to D completeness they 
will wait for C.close to transition to D.

When the output transitions to N completeness C.comp transitions to N and 
~C.comp=>C.close transitions to D allowing a transition to D completeness wavefront into the 
constant network. If the input is not D completeness the rank of “all of” behaviors will wait for 
the input to transition to D completeness. When the transition to D completeness wavefront 
arrives it passes through the “all of” behaviors into the constant network. C.close will remain D 
with the “all of” behaviors maintaining the D completeness wavefront until the wavefront has 
propagated all the way through the network and transitioned the output to D completeness. If Ain 
and Bin transition to completely N they will wait for C.close to transition to N.

When the output transitions to N completeness C.comp transitions to N and 
~C.comp=>C.close transitions to D allowing a transition to D completeness wavefront into the 
constant network.

And so on.
The next input transition is not allowed into the network until the current transition wavefront 

has completely propagated through the network and transitioned the output. The closure, 
recognizing the singularly appreciable event of the output of the constant network transitioning 
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to completeness manages the monotonic transitioning of input presentations regulating the flow 
of wavefronts into the network.

3.7.2. Expressing the oscillation network
The closed network with a single converted differentness appreciating the monotonic 

transitions or oscillations between two disjoint completeness representations is similar to a 
spontaneously alive binary ring oscillator circuit with a single inversion. So the network is called 
an oscillation network.

The black paths in Figure 3.20 are interaction wavefront flow paths. The orange paths are 
closure flow paths. The initializing converter allows the network to be initialized to all N, empty 
of interaction differentness ready for the first transition to D completeness (appendix section 
D.1.1.)

The network expression with closure introduces two syntax elements. The tilde ~ represents 
conversion of D to N or of N to D (Section 3.2.1). The conversion occurs only in closure, never 
in an interaction wavefront. The ? before a locality name indicates the completeness reduction of 
the referenced locality to a single place of association of the same name with a .comp suffix, 
name.comp.

Expression of the oscillation network

(net (Ain/{1 0}/ Bin/{1 0}/ => C/{1 0}/)
       (A/{1 0}/ B/{1 0}/ C.comp/)

A<=[Ain ~C.comp]
B<=[Bin  ~C.comp]
C.comp<=?C/{ 1<={[A/0 B/1] [A/1 B/0]}
        0<={[A/0 B/0] [A/1 B/1]} } )

binding portal localitiesbound reference name

dependency relations

internal localities

C.comp is dependent on the completeness of C the completeness of which is dependent on 
the components of A which are dependent on Ain and conversion of C.comp and on the 
components of B which are dependent on Bin and conversion of C.comp.

3.8. INTERLUDE: Marking time with the oscillation network
Closing a constant network with the converted output locality completeness enabling the 

network input creates a spontaneously alive, self regulating network continually striving to 
transition between D completeness and completely N performing the interaction of its 
encompassed network on successive presentations of completeness transition with its own 
appropriate delay. 

The encompassed interaction network provides interaction behavior. The input “all of” 
enable rank provides memory behavior. The completeness of input criterion and the 
completeness closure provide coordination behavior. These are the same properties exhibited by 
the primitive behaviors in section 3.3. At this point the oscillation network can be considered an 
abstract primitivity. All networks from now on will be composed of oscillation networks.

The encompassed interaction network must be constant. If a wavefront in the network flows 
anywhere other than to contribute to the output of the network the completeness of the output of 
the network will not imply the status of the non contributing wavefront.
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3.8.1. Oscillation network space and time
The constant network encompassed by the closure is the interaction space. The transitions of 

the output completeness between D completeness and completely N are the appreciable 
boundaries of instances of interaction and differentness of interaction time in relation to the 
encompassed constant network. The oscillation network appreciating these boundaries serves as 
an escapement mechanism establishing a nonuniform metric of interaction time for its 
encompassed constant network in relation to its flowing wavefronts of transition. The oscillation 
network is now in control of its own interaction time and there is no longer any appeal to a 
conventional metric of time. Network interaction time becomes a metric of time in itself 
unrelated to any conventional metric of time.

From this point on networks will be in control of their own time.

3.8.2. Nothing new
An oscillation network is an emergent behavior expressed solely in terms of dependently 

associating the defined primitive behaviors (section 3.2). Nothing new has been introduced either 
abstractly or substantially.

3.8.3. No external metrics
There is no coherent reference frame or external metric of space or of time relative to an 

oscillation network and trying to impose an external metric onto the oscillation network 
contributes nothing to either the understanding of or the effective realization of the oscillation 
network. 

3.8.4. The transcendental view
The closure network can be removed and ignored and the constant network within the closure 

network viewed as a single step mapping behavior if one wishes.

3.9. The pipeline network: composing self regulation
A pipeline network is a structure of linked oscillation networks coordinating their wavefront 

flow with closure relations. Placing the output completeness determination of oscillation network 
A after the input enable closure of oscillation network B links the two oscillation networks 
coordinating wavefront flow from oscillation network A to oscillation network B.

The responsible environment
An oscillation network self regulates the monotonic transitioning delay of its input 

between D completeness and completely N. Prior to this point the environment 
determined the delay between presentation transitions in terms of a conventional time 
metric. The environment still has an imposed requirement for monotonically transitioning 
presented input with an appropriate delay between transitions but now the oscillation 
network itself determines the appropriate delay between transitions of input 
presentation. The responsibility of the environment is now to honor the closure by next 
transitioning the input only after each transition wavefront is accepted with closure by the 
network.

The environment is still a source of variability and monotonic transitioning but it is 
no longer in complete control. The network itself is now in control of its own time. There 
is no longer any appeal to a conventional metric of time.
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Figure 3.21 shows a pink an orange and a blue oscillation network. They are linked by 
placing the completeness of the pink network after the enable of the orange network and by 
placing the completeness of the orange network after the enable of the blue network forming a 
pipeline of linked oscillation networks.
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Figure 3.21. linking oscillation networks.

The wavefront accepted by the pink network from a previous network flows to the enable of 
the pink network and is stably maintained until accepted by the orange network however long 
this might take. When accepted by the orange network the pink network can determine the 
completeness of its flow and can accept the next wavefront transition into its network.

The wavefront accepted by the orange network from the pink network flows to the enable of 
the blue network and is stably maintained by the orange network until accepted by the blue 
network however long this might take. When accepted by the blue network the orange network 
can determine the completeness of its flow and can accept the next wavefront transition into its 
network.

The wavefront accepted by the blue network from the orange network flows to the enable of 
a next network and is stably maintained by the blue network until accepted by the next network 
however long this might take. When accepted by the next network the blue network can 
determine the completeness of its flow and can accept the next wavefront transition from the 
orange network into its network.

And so on.

3.9.1. Pipeline wavefront flow
Each oscillation network of a pipeline network is individually and spontaneously alive 

continually striving to transition between D completeness and completely N. The oscillation 
networks mutually coordinate each other’s striving through the closure links. At each closure link 
an early interaction wavefront transition will wait indefinitely for a corresponding closure enable 
transition and an early closure enable transition will wait indefinitely for a corresponding 
interaction wavefront transition. As oscillation networks individually oscillate, alternating 
wavefronts of transition to D completeness and completely N spontaneously flow, fully 
coordinated, from oscillation network to oscillation network through the pipeline network with 
transition to D wavefronts interacting as they flow through the constant networks encompassed 
within the oscillation networks.

3.9.2. The closure link
Placing the completeness for a locality of a delivering oscillation network after the enable of 

the same locality of the receiving oscillation network forms a closure link. A closure link for a 
locality is determined by the expression of the locality which specifies the determination of its 
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transition to D completeness and its enable completeness. Determining the transition to 
completely N is universally the same for all localities. Figure 3.22 shows closure links for 
several locality structures with their completeness determination networks after their locality 
enable network. A link is typically on the output of a network and is defined by the expression of 
the output locality. In Figure 3.25 through Figure 3.30 each locality declaration is shown above 
the corresponding completeness determination network.
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Figure 3.22. Completeness of localities with their structure expressions.

See the localities of net Figure 3.24 for one bit locality links. See qtob/B Figure 3.25 for a 
two bit locality link. See 5bitadd section 3.4.10 for five bit locality links. See qtob/A Figure 
3.25 for a quaternary locality link.

The closure link is similar to the notion of asynchronous handshakes. 

“in its most general form, asynchronous design removes the global clock in favor of 
distributed local handshaking to control data transfer and changes of state.” 6 

This is a view that defers to clocked Boolean design as the fundamental referent with 
asynchronous design as a subordinate derivative variation. The present narrative takes the 
opposite view considering depemdently flowing asynchronous behavior as fundamental and 
synchronous behavior as derivative (sections 1.1.1,  1.8,  3.4.6 and 5.7.5). Closure represents a 
more integrated wholeness than does the notion of handshake.

3.9.3. The closure protocol

• A locality completeness closes with (enables monotonic transition of) all localities on which 
its completeness is dependent. 

• A locality is closed by (its monotonic transition enabled) all the localities which depend on it 
for their own completeness transition.
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a constant network typically has two or more input localities and one output locality which is 
dependent on all of the input localities. So the completeness of the output closes with all the 
inputs as shown in Figure 3.20 forming an oscillation network. The inputs, however, are two 
different localities from two different networks and must be viewed as closed individually. The 
oscillation network on the left of Figure 3.23 is redrawn to show the localities A and B closed 
individually.
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Figure 3.23. Localities A and B are shown as individually closed localities.

Each locality A and B will determine its own completeness and close with the localities on 
which it is dependent as shown on the right of Figure 3.23. Locality C contributes to the 
completeness of some locality and will be closed with and enabled by that locality as shown on 
the right of Figure 3.23. Links appear on the input and output of the oscillation network.

Figure 3.24 illustrates the network at the right of Figure 3.23 in the context of its constant 
network boundaries shown with dashed lines. The links for the two inputs are now output links 
in separate networks. Links will be generally associated with network outputs. Closure relations 
flow beyond the oscillation network expression and necessarily pass through its binding portal 
closing with links in other networks.

-.close

-.close C/1

C/0

X/1

X/0

-/1

-/0

C/1

C/0

A/1

A/0

B/1

B/0

link

link

link
n

init init

AB.comp

n

X.comp

Y.comp

source of B

source of A

AB.comp

AB.comp

n

net net

C.comp

Y/1

Y/0

-/1

-/0

-/1

-/0

-.comp

destination
of C

computation flow
closure flow

initialization signal
network boundary

X.close

Y.close

Figure 3.24. Constant network encompassed with explicit closure links.

3.9.4. Counter flowing networks
Figure 3.24 and Figure 3.21 provide the first glimpses of the counter flowing networks of a 

pipeline network. A pipeline network composed of oscillation networks forms a structure of 
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interpenetrating counter-flowing networks. Interaction transition wavefronts flow through the 
constant networks in the direction of interaction. Closure transitions flow through the closure 
network counter to the direction of interaction flow. The counter flowing networks intersect 
through localities with links that coordinate the counter directional flows with common 
singularly appreciable completeness relations (section 3.9.7).
3.9.4.1. Bubble flow

The closure network transition flow from the output of the pipeline to the pipeline input 
through the links is referred to as bubble flow. The wavefronts spontaneously flow into bubbles 
as the bubbles flow in the reverse direction around the wavefronts (Appendix D). 

3.9.5. Expressing closure flow and composition
The expression of the network named net in Figure 3.24 begins with the expression of the 

enclosed constant network from Figure 3.11.
The expression of the constant network encompassed by the oscillation network.

(net (A/{1 0}/  B/{1 0}/ =>  C/{1 0}/)
C/{ 1<={[A/0  B/1] [A/1  B/0]}
        0<={[A/0  B/0] [A/1  B/1]}  } )

binding portal localitiesbound reference name

dependency relations

A link is then added to the output locality C. The output C is enabled by the conversion of 
C.comp received from outside the network. AB.close is generated inside the network from the 
completeness of C and sent through the binding portal to close with the sources of A and B.

The binding portal must now include the flow of both the constant network and the closure 
network.

Closure link integrated into the expression of net.
(net (A/{1 0}/,AB.comp/  B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
 AB.comp<=?C/[{ 1<={[A/0 B/1] [A/1 B/0]}

        0<={[A/0 B/0] [A/1 B/1]}  } ~C.comp]    )

AB.close is dependent on the completeness reduction ? of C the completeness of which is 
dependent on the completenesses of A and B and the conversion ~ of C.comp.

Every interaction locality of the binding portal is paired by a comma with a corresponding 
closure flowing in the opposite direction: A/{1 0}/,AB.comp and B/{1 0}/,AB.comp and C/{1 
0}/,C.comp. Again blue is input and red is output. The interaction and closure flows through a 
portal are dependent but are not simultaneous. For instance, in the binding portal A is paired with 
AB.comp. In Figure 3.24 an AB.comp transition will flow out of the portal and later enable the 
transition of X which will then flow into the portal as a transition of A.
3.9.5.1. Half oscillations

There is one complete oscillation network in Figure 3.24 but the expression of the oscillation 
network occurs over three component constant network expressions none of which contains a 
complete oscillation network. Each component constant network with a link on its output locality 
forms a pipeline component network expressing two half oscillations, an input/completeness half 
oscillation closing with the inputs to the network and an output/enable half oscillation closed by 
the output of the network. 
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3.9.6. Composing half oscillations
Pipeline composition is illustrated by adding links to the output locality of the constant 

networks qtob and btoq of section 3.4.9 forming the pipeline component networks of Figure 
3.25.
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Figure 3.25. Primitive pipeline component networks bounded by half oscillations.

Expression for pipeline component btoq.
binding portal localitiesbound reference name

dependency relations

(btoq(A/[1 0]/{1 0}/,A.comp/ => B/{3 2 1 0}/,B.comp/)
A.comp<=?B/[{3<=[A/1/1  A/0/1]
     2<=[A/1/1  A/0/0]

   1<=[A/1/0  A/0/1]
    0<=[A/1/0   A/0/0]}  ~B.comp]  )

A.comp is dependent on the completeness reduction ? of B the completeness of which is 
determined by the dependency relations of its components, {3 2 1 0} on input locality A 
components and ~B.comp. In the binding portal input/presentation locality A is paired with 
closure A.comp and output/assertion locality B is paired with closure B.comp.

Expression for pipeline component qtob.

(qtob(A/{3 2 1 0}/,A.comp => B/[1 0]/{1 0}/,B.comp)
A.comp<=?B/[[ 1{1<={A/3  A/2}
                0<={A/1  A/0}}
           0{1<={A/3  A/1}
            0<={A/2  A /0}}]  ~B.comp ]  )

binding portal localitiesbound reference name

dependency relations

A.comp is dependent on the completeness reduction ? of B the completeness of which is 
determined by the dependency relations of its components, [1 0]/{1 0} on input localities A 
components and ~ B.comp. In the binding portal input/presentation locality A is paired with 
closure A.comp and output/assertion locality B is paired with closure B.comp.
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3.9.6.1. Associating the half oscillations
The example pipeline network is composed by associating the output/enable half oscillation 

locality btoq/B to the input/completeness half oscillation locality qtob/A forming a pipeline 
network containing one oscillation network and bounded by half oscillations. The constant 
network is composed as before by associating a binding portal output to a binding portal input 
(Figure 3.17) but now the composition involves associating the paired closures which 
simultaneously composes the two counter flowing networks
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Figure 3.26. linked pipeline segment networks forming a pipeline network.

3.9.6.2. Locality inheritance
The expression of composition, Figure 3.26, is simplified by expressing the interaction flow 

dependency relations in terms of whole locality references and nameless nesting relations.

The dependency expression for pipe.

(pipe(X => Z)
Z<=qtob(btoq(X))  )

bound reference name

dependency relations

binding portal localities

and inheriting closure relations as well as locality structure from the referenced component 
network expressions (section 3.4.9.3).

Z inherits locality structure and closure relation from qtob/B. 

(qtob(A/{3 2 1 0}/,A.comp/ => B/[1 0]/{1 0}/,B.comp/)

Z<=qtob(    ) Z/[1 0]/{1 0}/,Z.comp/
reference referential inheritance
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X inherits locality structure and closure relation from btoq/A. 

(btoq(A/[1 0]/{1 0}/,A.comp/ => B/{3 2 1 0}/,B.comp/)

(btoq(X) X/[1 0]/{1 0}/,X.comp/
reference referential inheritance

The inheritance expanded expression for pipe network of Figure 3.26.

(pipe(X/[1 0]/{1 0}/,X.comp/ => Z/[1 0]/{1 0}/,Z.comp/)
Z,Z.comp<=qtob(btoq(X,X.comp))  )

bound reference name

dependency relations

binding portal localities

pipe/Z,Z.comp is dependent on qtob/B,B.close which is dependent through btoq on pipe/
X,X.comp. 
3.9.6.3. Composing bigger pipelines

Pipeline networks bounded by half oscillations are composed by associating half oscillation 
binding portal localities to form larger pipeline networks. The expression below connects two 
pipe networks to form bigpipe network of Figure 3.27.

The dependency expression for bigpipe network of Figure 3.27

(bigpipe(M  => N)
N<=(pipe(pipe(M))    )

bound reference name

dependency relations

binding portal localities

N is dependent on the outer pipe which is dependent on the inner pipe which is dependent on 
M. N inherits its locality structure and closure flow from pipe/Z which inherited its structure and 
closure flow from qtob/B. M inherits its locality structure and closure flow from pipe/X which 
inherited its structure and closure flow from btoq/A.

The inheritance expanded expression for bigpipe network of Figure 3.27.

(bigpipe(M/[1 0]/{1 0}/,M.comp/ => N/[1 0]/{1 0}/,N.comp/)
N,N.comp<=(pipe(pipe(M,M.comp))    )

bound reference name

dependency relations

binding portal localities
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Figure 3.27. Longer pipeline composed of shorter pipelines.

The pipeline bigpipe contains three complete oscillation networks and is bounded by half 
oscillations ready for further composition.
3.9.6.4. Simultaneously flowing instances of interaction

Each transition to D completeness presented to an input half oscillation boundary of a 
pipeline network initiates a wavefront of transition to D completeness flowing through the 
pipeline network. After the D wavefront propagates through one or more oscillation networks the 
input completeness half oscillation boundary can accept a presentation transition to completely 
N. After the transition to completely N wavefront propagates through one or more oscillation 
networks the input completeness half oscillation boundary can accept a next presentation of 
transition to D completeness initiating a next transition to D completeness wavefront into the 
pipeline network. A pipeline network maintains the independence and integrity of multiple 
transition to D completeness wavefronts separated by transition to completely N wavefronts 
simultaneously flowing through different stages of a long pipeline network each representing an 
isolated and discrete differentness of instance of interaction behavior and instance of interaction 
time.

The wavefronts remain isolated because a completely N wavefront can only flow into a D 
bubble. It cannot flow into a D completeness wavefront. Similarly a D completeness wavefront 
can only flow into a N bubble. It cannot flow into a completely N wavefront. The wavefronts can 
never overtake each other in a pipeline network (Appendix D). 
3.9.6.5. Pipeline network time

Each successive transition to D completeness wavefront in a pipeline network is a future in 
relation to its predecessor transition to D completeness wavefronts and a past in relation to its 
successor transition to D completeness wavefronts. 
3.9.6.6. The completeness of input criterion

The first transition to D completeness wavefront to flow into a pipeline network produces the 
first transition to D completeness wavefront flowing out of the pipeline network the 
completeness of which which implies the completeness of the first input presentation. The 
second input transition to D completeness wavefront produces the second output transition to D 
completeness wavefront which implies the completeness of the second input presentation and so 
on. If each oscillation network fulfills the completeness of input criterion then the pipeline 
network as a whole fulfills the completeness of input criterion.



A Journey Through Computatuion 2/21/25, 11:39 AM

57 Copyright © 2024 by Karl Fant

3.9.7. Variations of closure structure
The examples in Figure 3.28 illustrates the possible web granularities of counter flowing 

closure structures for the constant network of Figure 3.18.
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Figure 3.28. The varieties of closure structure for a given constant network.
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3.9.7.1. Figure 3.28a network expression: raw constant network
The raw constant network as described in section 3.4.9.4 can be expressed as a composition 

of component networks: 

(net(A/{1 0}/  B/{1 0}/ => C/{1 0}/)
C/{1<={{[A/0  B/1] [A/1  B/0]} 
      0<={[A/0  B/0] [A/1  B/1]} }   )

The bignet network of Figure 3.28a is expressed as references to net.
The dependency expression

(bigneta(W X Y Z => C) 
C<=net(net(W X) net(Y Z))   )

The inheritance expanded network expression.

(bigneta(W/{1 0}/ X/{1 0}/ Y/{1 0}/ Z/{1 0}/ => C/{1 0}/) 
C<=net(net(W X) net(Y Z))   )

Or the network can be expressed entirely in terms of relations among primitive behaviors 
with no references and no inheritance. Locality structures have to be explicitly expressed.

 (bigneta(W/{1 0}/  X/{1 0}/  Y/{1 0}/  Z/{1 0}/  => C/{1 0}/)    
C/{1<={ [ {[W/0  X/1] [W/1  X/0]}  {[Y/0  Z/0] [Y/1  Z/1]} ]  

   [ {[W/0  X/0] [W/1  X/1]}  {[Y/0  Z/1] [Y/1  Z/0]} ] } 
      0<={ [ {[W/0  X/1] [W/1  X/0]}  {[Y/0  Z/1] [Y/1  Z/0]} ]

   [ {[W/0  X/0] [W/1  X/1]}  {[Y/0  Z/0] [Y/1  Z/1]} ] } }  )

bigneta is a constant network with no closure.
3.9.7.2. Figure 3.28b network expression: coarsest granularity of closure

There are two approaches to expressing bignetb of Figure 3.28b. 
1.  The link can be syntactically incorporated into the primitive behavior expression of 

bigneta. There are no references to already expressed networks and hence no inheritance so 
bignetb has to explicitly express the closure in detail including the structure of the binding 
portal.

(bignetb(W/{1 0}/,WXYZ.comp/  X/{1 0}/,WXYZ.comp/  Y/{1 0}/,WXYZ.comp/  Z/{1 
0}/,WXYZ.comp/ => C/{1 0}/,C.comp/)    
WXYZ.comp<=?C/[{1<={ [ {[W/0  X/1] [W/1  X/0]}  {[Y/0  Z/0] [Y/1  Z/1]} ]  

         [ {[W/0  X/0] [W/1  X/1]}  {[Y/0  Z/1] [Y/1  Z/0]} ] } 
            0<={ [ {[W/0  X/1] [W/1  X/0]}  {[Y/0  Z/1] [Y/1  Z/0]} ]

         [ {[W/0  X/0] [W/1  X/1]}  {[Y/0  Z/0] [Y/1  Z/1]} ] } }  ~C.comp ] )
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2.  The link can be integrated into the expression of a component network and the component 
network incorporated by reference. Network netL incorporates a closure link to the above 
network net.

(netL(A/{1 0}/,AB.comp/  B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
AB.comp,<=?C/[{1<={{[A/0  B/1] [A/1  B/0]} 

      0<={[A/0  B/0] [A/1  B/1]} }    ~C.comp] )

bignetb references netL with a link once and net without a link twice.

The dependency expression.

 (bignetb(W  X  Y  Z  => C)    
C<=netL(net(W X)  net(Y Z)) )

The entire dependency structure including the references to net and the binding portal 
inherits from netL.

The inheritance expanded network expression.

 (bignetb(W/{1 0}/,W.comp/  X/{1 0}/,X.comp/  
Y/{1 0}/,Y.comp/  Z/{1 0}/,Z.comp/  => C/{1 0}/,C.comp/)    

C<=[netL(net(W,W.comp  X,X.comp) net(Y,Y.comp  Z,Z.comp))  ~C.comp] )

bignetb forms a pipeline component network of half oscillations.
3.9.7.3. Figure 3.28c network expression: finer granularity of closure

bignetc of Figure 3.28c composed with three references to netL. The expression of bignetc 
inherits its locality structure and closure relations from the references to netL.

The dependency expression

 (bignetc(W  X  Y  Z  => C)    
C<=netL(netL(W  X) netL(Y  Z))  )

The inheritance expanded network expression.

 (bignetc(W/{1 0}/,W.comp/  X/{1 0}/,X.comp/  
 Y/{1 0}/,Y.comp/  Z/{1 0}/,Z.comp/  => C/{1 0}/,C.comp/)    

C<=[netL(netL(W,W.comp X,X.comp) netL(Y,Y.comp Z,Z.comp))  ~C.comp]  )

bignetc contains one oscillation network bounded by half oscillations.
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3.9.7.4. Figure 3.28d network expression: integrating the link
The “all of” rank of a cross association search can serve as the enable behavior of a link. 

This can save some primitive behaviors with the tradeoff of increasing the inputs of other 
primitive behaviors. Whether such a tradeoff is useful depends on the specifics of a network. 
bignetd is composed from component network net2 that contains the alternatively structured 
links.

In the expression of net2 below ~C.close is applied to the cross association rank of “all of” 
behaviors that are determining the differentness of locality C. The rank of “all of” behaviors 
does double duty as interaction behaviors and as closure enable behaviors.

(net2(A/{1 0}/,AB.comp/  B/{1 0}/,AB.comp/ => C/{1 0}/,C.comp/)
(allofrank/{3 2 1 0}/)
allofrank/[{3<=[A/1  B/1]

        2<=[A/1  B/0]
        1<=[A/0  B/1]
        0<=[A/0  B/0]   }   ~C.comp]

AB.comp<=?C/{1<={allofrank/1  allofrank/2} 
    0<={allofrank/0  allofrank/3} } )

bignetd composed from three references to net2.

The dependency expression

(bignetd(W  X  Y  Z  => C)    
C<=net2(net2(W X) net2(Y Z))  )

The inheritance expanded network expression.

 (bignetd(W/{1 0}/,W.comp/  X/{1 0}/,X.comp/  
 Y/{1 0}/,Y.comp/  Z/{1 0}/,Z.comp/  => C/{1 0}/,C.comp/)    

C<=[net2(net2(W,W.comp X,X.comp) net2(Y,Y.comp Z,Z.comp))  ~C.comp])

bignetd contains one oscillation network bounded by half oscillations.
3.9.7.5. Figure 3.28e network expression; finest granularity of closure

In Figure 3.28e the completeness and enable behaviors of the link are more finely integrated 
into the constant network locality by locality forming the longest pipeline version of the network 
with length of pipeline being characterized by the number of oscillation networks from input 
presentation to output assertion.

Each component net3 network contains two links and one complete oscillation network 
bounded by half oscillations.
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(net3(A/{1 0}/,A.comp/  B/{1 0}/,B.comp/ => C/{1 0}/,C.omp/)
(allofrank/{3 2 1 0}/,allofrank.close/)
(A.comp  B.comp)<=?allofrank/[{3<=[A/1  B/1]

       2<=[A/1  B/0]
       1<=[A/0  B/1]
       0<=[A/0  B/0] }   ~allofrank.close]

allofrank.close<=?[C/{1<={allofrank/1 allofrank/2} 
              0<={allofrank/0 [allofrank/3} } ~C.comp] )

bignete is composed with three references to net3: 

The dependency expression.

(bignete(W  X  Y  Z  => C)    
C<=net3(net3(W X) net3(Y Z))  )

The inheritance expanded network expression.

 (bignete(W/{1 0}/,W.comp/  X/{1 0}/,X.comp/  
 Y/{1 0}/,Y.comp/  Z/{1 0}/,Z.comp/  => C/{1 0}/,C.comp/)    

C<=[net3(net3(W,W.comp X,X.comp) net3(Y,Y.comp Z,Z.comp))  ~C.comp] )

bignete contains four oscillation networks two of which are concurrent. The network is 
bounded by half oscillations.
3.9.7.6. Webs of singularly appreciable transition completeness

The counter flowing networks form a web of singularity appreciation. In Figure 3.28c the 
counter flowing networks intersect through singularly appreciable component network outputs. 
In Figure 3.28e the counter flowing networks intersect through every locality, each an 
appreciable singularity of transition completeness which is dependent on other localities and has 
other localities dependent on it, forming a finer granularity of intersection.
3.9.7.7. Still a constant network

The closure network applied to a constant network does not affect the interaction behavior of 
the constant network. All five versions of the constant network and counter flowing closure 
networks in Figure 3.28 deliver the same interaction behavior. The escapement behavior of the 
component oscillation networks, affects the granularity of instance of interaction time and the 
throughput performance of the pipeline network. 

3.10. INTERLUDE: The pipeline network
A pipeline network is a composition of linked oscillation networks bounded by half 

oscillations which forms a structure of interpenetrating counter-flowing networks with 
interaction transition wavefronts flowing through the pipeline network in the direction of 
interaction and with closure transitions flowing through the closure network counter to the 
direction of interaction flow. The counter flowing networks intersect through localities with links 
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that coordinate both counter directional flows with singularly appreciable common transition 
completeness relations.

The constant network within the pipeline network, regardless of the closure structure 
encompassing it, remains the determiner of interaction behavior. Its behavior remains constant, 
always asserting the same output for the same presented input and it continues to fulfill the 
completeness of input criterion. 

3.10.1. The exposed binding portal and the environment
Even though the component oscillation networks are spontaneously striving to oscillate a 

pipeline network as a whole remains dependent on the environment beyond its exposed binding 
portal to present monotonically transitioning input differentnesses, to provide liveness and 
variability of behavior.

From this point on all networks will be pipeline networks with counter flowing interaction 
and closure networks bounded by half oscillations.

3.10.2. Pipeline network interaction space
The constant network within the pipeline network remains the interaction space. The 

encompassment with a closure network does not alter the constant network and its interaction 
behavior.  

3.10.3. Pipeline network interaction time
The flow of a wavefront of transition to D completeness from the input of the pipeline 

network to its output followed by a wavefront of transition to completely N marks one instance 
of interaction time for the pipeline network as a whole bounded by its binding portal and framed 
by transitions to completely N wavefronts. 

There can be multiple wavefronts of transition to D completeness each followed by a 
wavefront of transition to completely N simultaneously flowing through stages of a pipeline 
network (section 3.9.6.4 and Appendix D). The oscillation networks marking instances of 
interaction time as the wavefronts of transition flow through them all cycle out of phase with 
each other and there is nothing stable about their phase relations. The internal behavior of a 
flowing pipeline network is an incoherence of fully coordinated but non-synchronous 
transitioning. There is no means of sampling an instant of stable analytically meaningful 
transition behavior across a flowing pipeline network. Only the closure network can appreciate 
as a singular wholeness the dynamic flow of wavefronts of transition through the dependency 
relations of the pipeline network.

The only singularly appreciable event differentiating instances of interaction for the pipeline 
network is the transition of the pipeline network output to D completeness followed by its 
transition to completely N marking one instance of interaction for the network as a whole.

The responsible environment
The environment still has an imposed requirement for monotonically transitioning the 

input to the pipeline network. Now an input completeness half oscillation of the 
pipeline network determines the appropriate delay between transitions of its input 
presentation. The responsibility of the environment is still to honor the closure of the 
input half oscillation of the pipeline network and if fulfilled the monotonic transitioning 
requirements for all the component oscillation networks of the pipeline network and their 
component primitive behaviors are also fulfilled.
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3.10.4. Nothing new.
A pipeline network is still just a network of dependency relations among primitive 

association behaviors. The pipeline network emerges from the oscillation network which 
emerges from the completeness of input criterion fulfilling constant network which emerges 
from the primitive interaction behaviors. Each stage of emergence is just a particular 
composition of primitive association behaviors defined in section 3.2 which, themselves, 
emerged from the freely associating persistences and their interacting conditions in the shaking 
bag of Chapter 2.

3.10.5. No external metrics
There is no coherent reference frame or external metric of space or of time relative to a 

pipeline network and trying to impose an external metric onto the pipeline network contributes 
nothing to either the understanding of or the effective realization of the pipeline network. 

3.10.6. The transcendental view
If one wishes, the closure network of a pipeline network can be removed leaving the raw 

constant network which can still be characterized as a single step mapping behavior transcending 
and ignoring its internal structure with its concurrent relations and ignoring the emergent 
behavior of the pipeline network.

3.11. The autonomous pipeline network: self control
An input/completeness half oscillation, instead of indicating when transitioned input can be 

accepted, can use its closure to form a completely presented input. A pipeline network can auto 
produce its own input. An output/enable half oscillation instead waiting for downstream closure 
of the completely formed output wavefront can immediately determine it own completeness of 
output and close with itself to effectively auto consume its own output wavefront,. 

Before this point network behavior has been entirely dependent on presented input from an 
external environment beyond the exposed binding portal of the network for liveness, for 
wavefront flow. The autonomous pipeline network now transitioning its own input presentation 
in its own time producing its own wavefronts is autonomously alive, is not dependent on any 
behavior external to the pipeline network. The pipeline network becomes isolated from the 
environment behaving independently producing its own wavefronts (liveness) in its own intrinsic 
time (rate of presentation) in its own intrinsic space (the network) as illustrated in Figure 3.29.
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Figure 3.29. Pipeline network with auto produce and auto consume.
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The expression of the network, with no activating and guiding reference from outside the 
network, has no binding portal and no reference name. The network is autonomous, continually 
alive and entirely on its own.

 (     (    =>    ) 
(Y  X  Z)
Z<=[qtob(Y)  ~?Z] /* auto consume */
Y<=btoq(X/[1{1<=N    /* auto produce  */

  0<=~?Y }  
           0{1<=N

  0<=~?Y }]  )  )
Z is dependent through qtob on Y and the converted completeness of Z. Y is dependent 

through btoq on X. X/1/1 is constant /N.  X/1/0 is dependent on the converted completeness of 
Y.  X/0/1 is constant /N.  X/0/0 is dependent on the converted completeness of Y. Localities X, 
Y and Z inherit their locality structure and closure relations from btoq and qtob. There are no 
binding portal localities and there is no reference name. Hence there is no binding locality 
directional coloring in the expression. The expression cannot be referenced and copied and does 
not return a referencable result.

The network is continually presented with X/00 and will cycle indefinitely interacting X/00. 
The network is autonomously behaving and free of the environment but it has lost variability of 
behavior.

3.12. The embedded pipeline network: the passive environment
An autonomous pipeline network, embedded in an environment, can take full responsibility 

for its own behavior and still relate to the environment for variability of behavior by sensing the 
environment at its own rate through a sampling portal and imposing output behavior on the 
environment at its own rate through an imposition portal. The environment is still a source of 
variability of behavior for the network but it is no longer a source of liveness and time for the 
network. The environment is no longer in control of the network through an exposed binding 
portal.

The sampling portal and the imposition portal do not form an exposed binding portal. With 
an exposed binding portal the environment references the network by name and binds external 
localities to the binding portal localities. The external environment is in control of the 
referencing and determines the specific bindings. The constant network passively and 
dependently waits on a presentation to its binding  portal from the external environment. 

With the sampling portal and imposition portal the embedded network is in complete control 
of referencing and opportunistically sampling non specific external differentnesses from the 
relatively continuous flux of the environment and of imposing its output on the environment. The 
environment is indifferently passive neither waiting on nor dependent on the embedded network. 

The network is now in complete control referencing the environment rather than the 
environment being in complete control referencing the network. The spontaneously behaving 
differentness of the network is manipulating and appreciating the passive differentness, 
information, of the external environment.
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Figure 3.30. A pipeline senses the environment and imposes on the environment. 

(     (    =>    ) 
(Y  Z  sensor)
imposedoutput<=Z<=qtob([Y  ~?Z])
Y<=btoq(X<=[sensor ~?Y]  )  )

imposedoutput is dependent on Z which is dependent through qtob on Y and the converted 
completeness of Z. Y is dependent through btoq on X which is dependent on sensor and the 
converted completeness of Y.

3.13. INTERLUDE: The autonomous pipeline network
From the pipeline network with its half oscillation boundaries emerges the autonomous 

network in complete control of its wavefront flow. Closure has finally rendered the constant 
network independent of its environment. With the oscillation network closure first removed the 
requirement of the environment to wait an appropriate interval between presentation transitions 
supplying a time referent to the network. With auto produce and auto consume closure has 
further removed the requirement of the environment to monotonically transition input 
presentations supplying liveness to the network. 

The constant network is finally in complete control of its own time and liveness on its own 
behavioral merits. It is not dependent on any extrinsic causative agencies or behaviors such as a 
mathematician with a pencil or an imposed clock interval or a responsible environment but is its 
own causative agency continually flowing its own wavefronts. The primitive behaviors passively 
subordinate to an external environment have collectively contrived to combine their external 
environments to achieve autonomy and independence.

While the network still relates to an external environment for its variability of behavior the 
network is in complete control of the relation. Control has migrated from the environment side of 
a exposed binding portal to the network side of sampling and imposition portals. The exposed 
binding portal has disappeared. The environment is now passive in relation to a determining 
network. Quandary 5 of section 3.6 is resolved. The network now expressing its own liveness 
and time and in complete control of the acquisition of its variability of behavior becomes an 
active explorer rather than a passive servant
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3.13.1. A complex persistence
Consider at this point that the passive environment might be a pure condition expression and 

that the autonomous network might be a complex persistence within it. That the sensor might be 
sensitive to specific differentness conditions within the environment. That the network enables 
the sensor and patiently waits for its sensor to encounter a specific condition which initiates a 
wavefront through the network causing a network behavior that affects the environment. Think 
proteins in cytoplasm.

3.13.2. Autonomous pipeline network space and time
The autonomous pipeline network is its own space of interaction. The monotonic transitions 

between D completeness and completely N auto produced to the input of the network are the 
ticks and tocks of its own interaction time. The consequent wavefront of each input flowing 
through the network is one instance of interaction time delivering its own ticks and tocks to the 
component oscillation networks within the autonomous pipeline network.

3.13.3. Still nothing new
An autonomous pipeline network is still just a network of dependency relations among 

primitive association behaviors (section 3.10.4) 
A newly introduced element here is the sensor which is a transducer sensitive to the 

environment which may or may not be realizable in terms of primitive interaction behaviors.

3.13.4. No external metrics
There is no coherent reference frame or metric of space or of time relative to an autonomous 

pipeline network and trying to impose an external metric onto the autonomous pipeline network 
contributes nothing to either the understanding of or the effective realization of an autonomous 
pipeline network. 

3.13.5. The transcendental view
The closure structure can still be removed to characterize the encompassed raw constant 

network as a single step mapping behavior that still always provides the same asserted output for 
the same presented input but the raw constant network returns to complete dependency on the 
environment.

3.14. The journey
The last sentence of Chapter 1 declared the pursuit of an accounting of interaction complete 

and sufficient in itself with no need of extrinsic support. The journey began with primitive 
behaviors made sufficiently expressive and continued to the constant network of dependently 
related primitive behaviors which remains dependent for its liveness, its referent of time and its 
source of variability of behavior on presentations of input from an external environment which is 
in complete control of the passive network. The journey continued through the oscillation 
network, expressing its own referent of time, to the pipeline network with its bounding half 
oscillations that close on themselves expressing its own source of liveness. The autonomous 

The no longer responsible environment
The isolated pipeline network now creates its own monotonically transitioning 

presentation with the appropriate delay. There is no longer any responsibility imposed 
on the environment. The constant network is now in complete control of itself 
autonomously behaving within an indifferent passive environment.
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network emerged sufficiently expressive and in complete control of itself taking from a passively 
indifferent external environment instead of receiving from a controlling external environment. 

3.14.1. A first principle fulfilled
An autonomous pipeline network is differentness spontaneously and dependently interacting 

and changing(sections 1.8 and 2.5.6).

3.14.2. A journey not yet complete
The exposed binding portal is gone and the network is in complete control of its own 

behavior but there remains a dimension of expressivity still to be considered. The common 
denominator of this chapter is that every example network accepts an input which initiates a 
wavefront that flows to the output and out of the network performing one isolated instance of 
interaction in one isolated instance of interaction time. The following wavefront of transition to 
completely N then erases the instance of interaction from the network isolating successive 
instances of interaction and allowing the network to be reused with another wavefront. The 
networks have no behavioral memory and no means of relating different instances of network 
interaction, different interaction wavefronts, in the context of the network even when the network 
is in complete control of itself (section 3.4.6.5). The next chapter addresses this expressional 
inadequacy.
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Chapter 4:
Temporal differentiation

4
To this point temporal differentiation has manifested as interaction time. One flow of 

transition to D completeness wavefront into through and out of a constant network followed by a 
transition to completely N wavefront erasing the interaction from the constant network marked 
one instance of interaction time in relation to a constant network (sections 3.5.2.2 and 3.4.6.5). A 
subsequent flow through the same constant network of transition to D completeness wavefront 
followed by a transition to completely N wavefront marked a different isolated instance of 
interaction time in relation to the same constant network. Instances of interaction time are 
differentiated in the context of the network but the constant network with no behavioral memory 
is not able to account its differentnesses of interaction time. Temporal differentness does not 
persist to be referenced within the context of the network precluding the constant network from 
representing a complete and coherent accounting of differentness spontaneously and dependently 
interacting and changing (section 1.8).

This chapter is about accounting the interaction of temporal differentnesses. Instances of 
interaction do not flow out of a network but are remembered and accounted flowing within the 
network which becomes a complete and coherent expression of interaction in contrast to being a 
fragment of interaction expression (section 3.4.5.5).

4.1. The ring network: boundless network, endless time
Associating the output/assertion half oscillation of a pipeline network directly to its input/

presentation half oscillation forms a ring network. The pipeline network’s input and output 
becomes completely internalized. The network becomes completely isolated. Interacting 
wavefronts no longer flow out of the network but they also no longer flow into the network. 
Whatever the network is doing it is completely accounting it. 

4.1.1. The base pipeline
For this example the initial pipeline is the component pipeline networks qtob and btoq, of 

Figure 3.25, linked binary to binary with quaternary half oscillation boundaries, Figure 4.1.
The dependency expression.

(baseX=> Z )
Z<=btoq(qtob(X))      )

The inheritance expanded network expression.

(basepipe(X/{3 2 1 0}/,X.comp/ => Z/{3 2 1 0}/,Z.comp/ )
Z,Z.comp<=btoq(qtob(X,X.comp))      )
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Figure 4.1. Base pipeline for the ring

4.1.2. Closing the pipeline
A ring network is a composition of linked oscillation networks which must include at least 

three oscillation networks to accommodate a transition to D completeness wavefront, a transition 
to completely N wavefront and one bubble (Appendix D). If output assertion half oscillation 
basepipe/Z is connected directly to input presentation half oscillation basepipe/X the resulting 
network has only two oscillation networks. So a pipeline component must be inserted between Z 
and X to form another oscillation network. The inserted pipeline component performs a shift of 
quaternary differentness.

Figure 4.2. The shift buffer pipeline component.

A.comp is dependent on the completeness of B which is dependent on shifted components of 
A which are dependent on ~B.comp.

The dependency expression.

(      (  =>   ) 
(Z:3/{3 2 1 0}/)
Z<= basepipe(shift(Z) )  )

Z initialized to Z/3 is dependent through basepipe and through shift on Z. The dependency 
of Z on Z closes the ring. Z inherits locality structure and closure relations from basepipe/Z and 
from shift/A.
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The inheritance expanded network expression.

(      (  =>   ) 
( Z:3/{3 2 1 0}/,Z.comp/ )
Z,Z.comp<= basepipe(shift(Z,Z.comp) )

The expression has no binding portal, no reference name, no boundary localities, nothing 
flows into or out of the ring, hence there is no binding portal directional coloring in the 
expression. With no boundary for wavefronts to flow into the ring a D completeness wavefront 
and a completely N wavefront must be initialized in the ring. This is expressed with (Z:3) 
specifying that Z/3 be initialized to D (Appendix E). 
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Figure 4.3. The ring network.

4.2. INTERLUDE: The ring network
Once instantiated the ring network is a completely self contained network providing its own 

liveness, time and variability of behavior. The initialized transition to D completeness wavefront 
followed by a transition to completely N wavefront autonomously, spontaneously and 
neverendingly flow around the ring at its own rate in its own space forever or until it fails from 
internal wear or external insult.

4.2.1. A new wholeness
The ring network is a wholeness of accounting representing a wholeness of expression as 

well as a wholeness of network (sections 3.4.5.5 and 3.4.9.8 and 3.5.2.4). The ring network now 
says everything there is to say about its interaction behavior. 
4.2.1.1. The loss of singular appreciability

The ring network, with no exposed binding portal, no input or output, and with its wavefront 
continually flowing around the ring network never having flowed into the ring network and 
never flowing out of the ring network, has no singular referent to characterize a beginning of 
instance of interaction or instance of interaction time or an end of instance of interaction  or 
instance of interaction time for the ring network as a whole. There is no output assertion 
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boundary to always assert the same output for the same input presented to the equally 
nonexistent input presentation boundary. 

There is no one transition to completeness that is privileged over any other transition to 
completeness in the context of the ring network as a whole. The ring network as a whole no 
longer has a singularly appreciable tick of time.
4.2.1.2. The incorporated external environment

The ring network with no referent of time itself is now managing the presentation of binding 
portal input for all of its component oscillation networks and hence determining instance of 
interaction and instance of interaction time for each component oscillation network. Each 
instance of interaction wavefront flows out of and is erased from each component oscillation 
network but each instance of interaction wavefront remains within the ring network flowing to a 
next interaction. No instance of interaction time wavefront is unaccountably lost from the ring 
network. The ring network has become an external environment to its component oscillation 
networks but an external environment fully incorporated into the ring network as a whole. The 
component oscillation networks previously dependent on the wavefront initiated by the pipeline 
network input presented from an external environment are now dependent on the eternal 
wavefront of the ring network. 
4.2.1.3. The master of interaction time

The ring network wavefront flowing around the ring uses, unuses and reuses each component 
oscillation network over and over. The ring network is managing the interaction time of its 
component oscillation networks but nothing manages time for the ring network as a whole. The 
continually flowing ring network wavefront manifests independently flowing, self regulating 
time within the ring network as a whole. There is no singularly appreciable referent of interaction 
time for the flowing wavefront but it is in complete control of the flow of interaction time 
nevertheless. 

4.2.2. Still just a composition of primitive behaviors
A ring network is still just a network of dependency related primitive association behaviors 

that emerges from the pipeline network (section 3.10.4).

4.2.3. No metrics
There is no coherent reference frame or metric of space or of time relative to a ring network 

and trying to impose an external metric onto the ring network contributes nothing to either the 
understanding of or the effective realization of the ring network. 

4.2.4. The end of the transcendental view: a boundary crossed
The ring network cannot be transcendentally characterized abstractly as a single step 

mapping behavior apart from its closure structure. Firstly, there is no mapping from a singularly 
appreciable input to a singularly appreciable output. Secondly, the ring network with its closure 
structure removed does not work. With the ring network the oscillation network becomes an 
essential un-transcendable unit of composition.

4.3. The source ring network: making time
A completely isolated ring network can extend beyond itself by linking the assertion 

boundary of any component oscillation network of the ring as an output of the ring network. 
Locality S is added and in Figure 4.4 as an assertion output dependent on Z.
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Figure 4.4. The source ring network.

Since the ring expression cannot be referenced because it has no reference name or binding 
portal the dependency expression of the ring expression is recapitulated for the source ring. For 
the source ring there is no presentation locality but there is an assertion locality to be referenced 
so the source ring expression invites reference with a half binding portal with reference name 
source.

The dependency expression.

 (source(  => S) 
(Z:3)
[Z  S]<= basepipe(shift(Z) )

S is dependent on Z initialized to Z/3 which is dependent through basepipe and through shift 
on Z. The dependency of Z on Z closes the ring. Z flows to two destinations Z and S. S and Z 
inherit locality structure and closure relations from basepipe/Z and shift/A.

The inheritance expanded network expression.

 (source(  => S/{3 2 1 0}/,S.comp/) 
(Z:3/{3 2 1 0}/,Z.comp/)
[Z,Z.comp   S,S.comp]<=basepipe(shift(Z,Z.comp) )

The source ring can be referenced as:

through the input half oscillation of a pipeline network.

4.3.1. Source ring network behavior
The continually flowing wavefront of the source ring network produces successive 

wavefronts of transition monotonically transitioning between D completeness and completely N 
at S delivering discrete differentiated instances of interaction time as input to a referencing 
pipeline network.

portal nested
(       source( )    )

full portal reference
source( => M)

locality nested
M<=source(  )
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The pipeline network is dependent on presentations monotonically transitioning between D 
completeness and completely N as a source of liveness, a source of variability of behavior and a 
source of time from beyond itself honoring its closure. Its beyond, however, is not an 
uncharacterized external environment but is fully characterized within the source ring network 
which as a whole is not dependent on anything. As far as the source ring is concerned it is 
entirely indifferent to the S portal making its continually flowing wavefront occasionally wait. 

One might view the ring network “environment” as controlling the pipeline network with 
input presentations as an external environment does through an exposed binding portal but the 
ring network, the “environment”, is not referencing the receiving pipeline network. The receiving 
pipeline network is referencing the ring network. The pipeline network initiates and is in 
complete control of the reference grabbing with its closure an instance of interaction and 
interaction time from the cornucopia wavefront of the ring network. This is similar to the 
sampling portal of the network of section 3.12 with its closure grabbing discrete instances of 
interaction from a passive and continuous external environment.

4.4. The pipeline ring network: from time to time
A ring network wavefront flow coupled to a pipeline network wavefront flow through at least 

one shared oscillation network forms a pipeline ring network as in Figure 4.6. The example 
pipeline ring named pipering is composed in terms of a pipeline network pipeline with btoq and 
qtob connected quaternary to quaternary. 

The dependency expression

(pipeline(X=> Z )
Z<=qtoq(btob(X))      )

The inheritance expanded network expression:

(pipeline (X/[1  0]/{1 0}/,X.comp/ => Z/[1  0]/{1 0}/,Z.comp/ )
Z,Z.comp<=qtoq(btob(X,X.comp))      )

X/1/1

X/1/0

X/0/1

X/1/0

btoq qtob

Z/1/1

Z/1/0

Z/0/1

Z/0/0

link

link

init init
X.comp

N
Z.comp

N

Closing a ring through pipeline requires at least one more oscillation network and the 
initialization of a D completeness wavefront which requires two oscillation networks one 
initializing the D completeness wavefront followed by one initializing a completely N wavefront 
to block the flow of the D completeness wavefront during initialization (Appendix E).
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The pipeline components are composed into a pipeline segment pipeseg1 initializing a D 
completeness wavefront to 1 is defined.

The dependency expression.

(pipering(in => out) 
(A)

[A   out]<=pipeline([pipeseg1(A)   in] ) )

The inheritance expanded network expression.

(pipering(in/{1 0}/,in.comp/ => out/{1 0}/, out.comp/) 
(A/{1  0}/,A.comp/ )

[A, A.comp   out, out.comp]<=pipeline([pipeseg1(A, A.comp)   in, in.comp] ) )

To form the pipeline ring the components of the in and out localities split and associate 
separately. in/1 and out/1 connect to the ring. in/0 is the network input and out/0 is the network 
output. The syntax    [A   out]<=pipeline    indicates that the output of pipeline associates to A 
and to out corresponding to the topmost level of composition of the pipeline output locality Z. 

Pipeline component initializing to 1.

 (init1(A/{1 0}/,A.comp/ => 
B:1/{1 0}/,B.comp/)

A.comp <=?B<=[A  ~ B.comp]  )

link

D

N
A

A.comp

1
0 B

B.comp

1
0

init

init1

Pipeline component initializing to N.

(initN(A/{1 0}/, A.comp/ => 
B:N/{1 0}/, B.comp/)

A.comp <=?B<=[A  ~ B.comp]  )

link

N

N
A

A.comp

1
0 B

B.comp

1
0

init

N

initN

Pipeline segment to inialize a D completeness wavefront.

(pipeseg1(A/{1 0}/,A.comp/ => B/{1 0}/,B.comp/)
B,B.comp<=initN(init1(A,A.comp ))  )

link

N

link
D

N

NA B

A.comp

1
0

1
0

init

N

pipe1
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Locality Z/1 associates to A and Z/0 associates to out. This association relation is illustrated on 
the left of Figure 4.5. 

The syntax    <=pipeline([A   in])    indicates that the input of pipeline/X associates from B 
and in corresponding to the topmost level of composition of the pipeline input locality. Locality 
B associates to X/1 and locality in associates to X/0. This association relation is illustrated on the 
right of Figure 4.5. 

The “all of” relations between the reference and the definition associate then the ordered 
terms within the “all of” relations associate.

[A,A.comp  out,out.comp]<=pipeline([pipeseg1(A,A.comp)  in,in.comp]  ) )

(pipeline(X/[1  0]/{1 0}/,X.comp  => Z/[1  0]/{1  0}/,Z.comp) (pipeline(X/[1  0]/{1 0}/,X.comp  => Z/[1  0]/{1  0}/,Z.comp)
pipeline reference output association pipeline reference input association

Figure 4.5. Binding portal associations for pipeline reference.

linkX/1/1
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B/0
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N

pipeseg1

nested

nested

nested

Figure 4.6. The pipeline ring network.

4.4.1. Pipeline ring behavior
The pipeline network has an exposed binding portal and just like the pipeline networks of the 

previous chapter receives presented input and delivers asserted output through its exposed 
binding portal. Each wavefront begun by the presented input in will interact with a wavefront 
from the ring network as it flows to the output out of the pipeline network. There has to be a first 
D completeness - completely N wavefront pair initialized in the ring network that will interact 
with the first transition to D completeness - completely N wavefront pair presented to the 
pipeline network. In this case the D completeness wavefront is initialized in component network 
pipeseg1 and the completely N wavefront is initialized in locality Z/1. The first wavefront pair 
entering the pipeline after initialization interacts with the initialized wavefront pair in the ring 
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network. This first instance of interaction produces the first D completeness wavefront to enter 
the ring network which is a memory of the first pipeline instance of interaction. The following 
completely N wavefront overwrites the D completeness wavefront in the pipeline network but 
the D completeness wavefront in the ring is not overwritten and lingers in the siding of the ring. 
The second D completeness wavefront entering the pipeline network interacts with this first 
pipeline instance of D completeness interaction wavefront lingering in the ring network. The 
third D completeness wavefront to enter the pipeline network will interact with the memory of 
the second pipeline D completeness instance of interaction lingering in the ring network. And so 
on.

The ring network coupled to the pipeline network with its wavefront flowing backward in 
pipeline space and forward in pipeline time enables a pipeline network to retain an interaction 
result wavefront and associate it with and interact with a future input wavefront of the same 
pipeline network. A present instance of interaction wavefront interacts with a past instance of 
interaction wavefront. The network now has an internal memory establishing an interaction 
dependency relation across different instances of interaction time. Temporal memory has 
emerged in relation to the network. Such a relation was not possible in the networks of Chapter 
3.

The pipeline ring network is the first example of a network with an exposed binding portal 
that is not constant. The pipeline ring network as a whole no longer asserts the same 
completeness of output for the same completeness of presented input.

4.5. INTERLUDE: A collision of expression regimes
The pipeline ring network represents a collision of expression regimes. The environment 

beyond the exposed binding portal is not in complete control of the network behavior because of 
the ring and the ring within the network is not in complete control of the network behavior 
because of the exposed binding portal. There are two sources of wavefront flow, of liveness and 
of time. The colliding wavefront sources cooperate and coordinate through a shared oscillation 
network but cooperation is not an arrow in the quiver of either regime.

A Tth wavefront flows into the pipeline network through the binding portal and a Tth 
wavefront flows out of the pipeline network. The fact that there is a ring network coupled to the 
pipeline network associating and interacting different instances of interaction time inside the 
pipeline network is not visible to the exposed binding portal. The external environment 
presenting to the exposed binding portal, however, must take into account this invisible influence 
on the interaction behavior of the pipeline which varies from presentation to presentation.

4.5.1. The environment expression regime
It is this influence on behavior not visible through the exposed binding portal (side effect) 

that concerns functional programming which strives to maintain, at all cost, the constancy of the 
network expression (stay functional) and for the environment presentation through the exposed 
binding portal to be in complete control of the interaction (referential transparency), i.e. all 
sources of wavefront flow are presented from the external environment and there are no sources 
of wavefront flow, no expressions of liveness or of time, from within the network itself such as a 
memory relating different instances of interaction. The functional view of interaction cannot get 
out of Chapter 3. 
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4.5.2. The network expression regime
The goal of this narrative is to completely characterize interaction in terms of a network of 

dependency relations among primitive behaviors in complete control of itself, i.e that all sources 
of wavefront flow are from within the network expression and there are no sources of wavefront 
flow, no expressions of liveness or of time, presented from outside the network expression. 

4.5.3. The exposed binding portal
The difference between these two expression regimes is the presence of or the absence of a 

binding portal exposed to an environment unaccounted by the network. If a network possesses a 
single exposed binding portal then the entire network and all of the internal sources of wavefront 
flow, the rings, will patiently wait on the presentation from the exposed binding portal, i.e. the 
external unaccounted environment remains in complete control of the liveness and temporal 
behavior of the network. With the pipeline ring network the external environment remains in 
control.

An exposed binding portal is a leak of accountability in the context of the network (section 
3.5.2.4). The network cannot encompass a complete accounting of interaction if it remains 
dependent on an exposed binding portal. The unaccounted environment can be an arbitrarily 
complex interaction (a human?) just beyond the exposed binding portal. The only way for a 
network to completely account its interaction is for the network to not have any binding portals 
exposed to an unaccounted external environment. The network must be in total control of all 
relations within the network and with any external environment. Assuming a responsible external 
environment is not an option for the network. 

4.5.4. Still nothing new
The pipeline ring network is still just a network of dependency relations among primitive 

behaviors.Nothing new has been introduced.

4.5.5. No metrics
There is no coherent reference frame or metric of space or of time relative to a pipeline ring 

network as a whole and trying to impose an external metric onto the pipeline ring network 
contributes nothing to either the understanding of or the effective realization of the pipeline ring 
network. 

4.6. Removing the exposed binding portal
The exposed biding portal of Figure 4.6 can be removed and its boundary incorporated into 

the network expression by closing the pipeline into a ring to form a network of coupled rings, by 
the half oscillations of the pipeline closing on themselves forming an autonomous pipeline 
network and by linking the pipeline network to ring networks forming a network of coupled and 
linked rings.

4.6.1. The coupled ring network
The pipeline component network of the pipering network can be closed by associating its 

output to its input through pipeseg1 forming a network of two rings coupled through a shared 
oscillation network as in Figure 4.7. The new ring still has to be at least three oscillation 
networks and must have an initialized D completeness and completely N wavefront pair so the 
pipeseg1 pipeline component network is needed again.
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(    (    =>    ) (out:0/{1 0}/,out.comp/)
out,out.comp<=pipering(pipeseg1(out,out.comp) ) )

link
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Figure 4.7. The network of two coupled rings.

Each ring is an internal source of wavefronts and of time which times are coordinated 
through a shared oscillation network. Neither ring cares that its wavefront might be delayed by 
the other ring. Each oscillation network including the shared oscillation network mark an 
instance of interaction time as the ring wavefronts flow through them. But the interaction 
network as a whole does not mark instances of interaction time. The two wavefronts form one 
single never ending instance of interaction time.

4.6.2. The autonomous pipeline network
In Figure 4.8 the exposed binding portal half oscillations of the component pipeline network 

close on themselves forming an autonomous pipeline network. The pipeline ring network 
becomes self determined like the network of Figure 3.30.
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(     (    =>    ) 
(  sensor/{1  0}/,sensor.close   out/{1 0}/,out.close)

out.close<=?out<=pipering(sensor,sensor.close)   )

link
X/1/1
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Figure 4.8. The pipeline network of pipering with auto produce and auto consume.

4.6.3. The network of coupled and linked rings
The binding portal half oscillations of the component pipeline network are linked to rings in 

Figure 4.9 which supply the input and receive the output of the pipeline. One more pipeline 
component buff that does not initialize is needed to form the three oscillation ring networks.

(buff(A/{1 0}/,A.comp/ => B/{1 0}/,B.comp/)
A.comp<=?B<=[A  ~Bcomp]  )

link
A

A.comp

1
0 B

B.comp

1
0

init

N

buff
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Network sourcering is expressed using buff and init1 and initN from section 4.4.

 (sourcering(   =>  out/{1  0}/,out.comp)
(Z/{1  0}/,Z.close)

(out,out.comp  Z,Z.close)<=initN(init1(buff(Z,Z.close)))   )

Network sinkring is a single rail ring that sinks the output wavefront.

(sinkring(in/{1  0},in.comp/  =>    )
( A/  B/:D  C/:N  D/  )

A<=?[in   D]     [in.comp  B]<=[A  ~C]     
C<=[B  ~D]     D<=[C  ~B]

link

D

N

1
0

init

init1

link

N

N

init

N

initN

link
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init

N
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out

link

init

initD

linkN
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init
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The pipeline ring network with input and output ring caps.

(    (    =>    )
sinkring(pipering(soucering( ) ) )  )

link
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Figure 4.9. The pipeline network of pipering linked to rings.

The component pipeline network is coupled to a ring through a shared oscillation network 
and is linked to an input ring and an output ring. All sources of wavefront flow are within the 
network.

4.7. INTERLUDE: The self determined network
Rings coupled through shared oscillation networks, rings linked through shared pipelines and 

imposition portals and sampling portals support indefinitely complex self determined network 
expressions. In the network of Figure 4.9 there are three different wavefronts in three different 
rings flowing and coordinating their flow in relation to each other. Consider the possibility of a 
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trillion mutually coordinating and interacting wavefronts flowing in a network of a trillion linked 
and coupled rings.

4.7.1. Nothing in control
With no exposed binding portal there is no singular authority that determines liveness, time 

and wholeness for the self determined network (sections 3.5.2.4 and 3.4.5.5). There is only the 
network itself and its intrinsic wavefronts. A self determined network is egalitarian (section 
4.2.1). No boundary is more authoritative than any other boundary. Everything is equally 
subordinate to everything else. Everything is equally dependent on everything else. Everything is 
equally determinative. There is nothing referentially central. There is nothing referentially 
global. There is no extrinsic authority. There is no intrinsic authority. There is only wholeness of 
network and wholeness of expression. There is nothing that references a self determined 
network. A self determined network does not report to anything else. A self determined network 
is a complete accounting of interaction within itself free to move through and relate to an 
external environment and to interact with other self determined networks.

4.7.2. No appreciable singularity of network behavior
With no exposed binding portal there is no singularly appreciable referent, no tick, of 

instance of interaction or instance of interaction time in relation to the self determined network 
as a whole. There is only the incoherent transitioning cacophony of its component oscillation 
networks (sections 3.5.2.3 and 3.10.3). The only agency capable of effectively appreciating the 
cacophony of interaction behavior within a self determined network is the counter flowing 
closure network (section 3.9.7 and 3.10.3) which is also an integral part of the self determined 
network managing the cacophony of inchoherent behavior in terms of the coherency of 
dependency completeness relations. 

4.7.3. Dimensions of differentiation
Differentness of condition (Chapter 2) and differentness of association (Chapter 3), 

interpenetrating, collaborating and mutually extending, can be considered the first two 
dimensions of differentiation and its interaction (Chapter 5). The differentness of wavefronts of 
change flowing through the first two dimensions forms a third dimension of temporal 
differentness of interaction (Chapter 4) which is not persistently referencable as are the first two 
dimensions. 

4.7.4. The temporal dimension of differentiation
While flowing wavefronts of transition use, unuse and reuse the differentness of each 

component oscillation network over and over extending their expression of differentness through 
interaction time there is nothing that similarly reuses and extends the differentness of interaction 
time over and over. Differentness of interaction time can never be reused because each instance 
of differentnesses of interaction time is irretrievably erased, irreferencibly unused, by the 
following transition to completely N wavefront. 

Interaction time is ephemerally self limiting but it is also indefinitely self extending (sections 
3.4.6.5 and 3.5.2 and 3.5.2.1). Transition to D completeness wavefronts interact producing 
subsequent transition to D completeness wavefronts which interact producing subsequent 
transition to D completeness wavefronts and so on. D completeness wavefronts flowing 
progressively and indefinitely represent the flow of time for a self determined network. A D 
completeness wavefront trails behind itself D completeness bubbles (section 3.9.6.4 and 
Appendix D). It is the D completeness bubbles that the following wavefront of transition to 
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completely N wavefront erases. A transition to completely N wavefront cannot overtake and 
erase a transition to D completeness wavefront. Similarly a transition to D completeness 
wavefront can only flow into completely N bubbles and cannot overtake and compromise a 
completely N wavefront.

In a self determined network D completeness wavefronts form narrow bands of continually 
progressing transition behavior followed by the transition to completely N wavefronts. Each ring 
network supports one bandlette of D completeness wavefront. These narrow bands of D 
completeness transition behavior form the dimension of temporal differentiation within which 
differentnesses of interaction time can associate and interact. Interaction time is the last but 
indefinitely extending dimension of differentiation and interaction.

4.8. The LFSR network: interacting differentnesses of time
The LFSR (Linear Feedback Shift Register) network of Figure 4.10 is a network of 5 rings 

with 6 independently flowing wavefronts coupled through a structure of shared oscillation 
networks. Each wavefront represents a different instance of interaction time with 5 instances 
interacting through a shared pipeline network. 

The LFSR network is constructed with pipeline component networks pipe1 which initializes 
a wavefront to 1, pipe0 which initializes a wavefront to 0, pipeN which initializes a wavefront to 
completely N and a pipeline of XOR networks.

4.8.1. Pipeline component networks for LFSR

Pipeline component initializing to 1

(init1(A/{1 0}/,A.comp/ => B:1/{1 0}/,B.comp/)
A.comp <=?B<=[A  ~ B.comp]  )

Pipeline component initializing to 0

(init0(A/{1 0}/, A.comp/ => B:0/{1 0}/, B.comp/)
A.comp <=?B<=[A  ~ B.comp]  )

Pipeline component initializing to N

(initN(A/{1 0}/, A.comp/ => B:N/{1 0}/, B.comp/)
A.comp <=?B<=[A  ~ B.comp]  )
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4.8.2. Initializing pipeline segment networks for LFSR

4.8.3. XOR pipeline component network for LFSR

4.8.4. The isolated LFSR network

The dependency expression

(     (   =>   )      ((B  C  D  E  F  O)/{1  0}/,*.close  )
F<=pipe1(E<=pipe0(D<=pipe1(C<=pipe0(B<=pipe0(pipe0(O

<=XOR(F XOR(XOR(B C) XOR(D E)))))))))   )
How to represent the two closures?
F is dependent through pipe1 on E which is dependent through pipe0 on D which is 

dependent through pipe1 on C which is dependent through pipe0 on B which is dependent 
through pipe0 and through pipe0 on O which is dependent through XOR on F and XOR which 
is dependent through XOR on B and C, and is dependent through XOR on D and E. The 
dependence of O on F E D C and B  and the dependence of each of them on O closes each ring 
through the XOR network.

Localities B, C, D and E each associates to two places which flow cannot be represented 
with syntax relation but must be represented with name correspondence.

pipe1 pipeline segment

(pipe1(A/{1 0}/, A.comp => B/{1 0}/, B.comp)
    B, B.comp <=initN(init1(A.comp))  )

pipe0 pipeline segment

 (pipe0(A/{1 0}/, A.comp => B/{1 0}/, B.comp)
   B, B.comp <=initN(init0(A, A.comp))  )

link

N

link
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C/{1 0}/,C.comp)
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The inheritance expanded network expression.

(     (   =>   )      (B/{1 0}/,B.comp  C/{1 0}/,C.comp  D/{1 0}/,D.comp  
    E/{1 0}/,E.comp  F/{1 0}/,F.comp  O/{1 0}/,O.comp)

F,F.comp<=pipe1(E,E.comp
         <=pipe0(D,D.comp
         <=pipe1(C,C.comp
         <=pipe0(B,B.comp
         <=pipe0(pipe0(O,O.comp
         <=XOR(F,F.comp 

XOR(XOR(B,B.comp C,C.comp) 
          XOR(D,D.comp E,E.comp)))))))))   )
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Figure 4.10. LFSR example network of multiple coupled rings

Figure 4.11 illustrates the LFSR network with 6 different wavefronts continually flowing 
around the 5 different rings of the network representing 6 differentnesses of time 5 of which 
interact through the shared XOR pipeline. 
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The 5 rings are color coded in Figure 4.11 to highlight their sharing of the peripheral 
oscillation networks.
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Figure 4.11. Coupled rings and their shared pipeline components.

4.8.5. The LFSR source network
Locality O of the LFSR can link to a pipeline network making it a source ring network. An 

assertion locality out  dependent on locality O is added to the LFSR expression as a 
referenceable output.

The network expression.

(LFSR(   => out/{1 0}/,out.comp/)      (  B/{1 0}/,B.comp/  C/{1 0}/,C.comp/ 
 D/{1 0}/,D.comp/  E/{1 0}/,E.comp/  F/{1 0}/,F.comp/  O/{1 0}/,O.comp/  )

F<=pipe1(E<=pipe0(D<=pipe1(C<=pipe0(B<=pipe0(pipe0(O
<=[XOR(F XOR(XOR(B C) XOR.(D E))) ~out.comp]))))))
out<=O  )
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Figure 4.12. LFSR source network.

The LFSR is referenced as

(  (LFSR( )     )   )     or as      dest<= LFSR( )      or as      LFSR(  => dest)

4.9. The immersed ring network: engaging the environment
The immersed ring network of Figure 4.13 is a network of two coupled rings with an 

imposition portal to influence the environment and a sampling portal sensitive to the effects of 
the imposition on the environment forming an interaction network capable of remembering and 
learning. 

4.9.1. The pipeline component networks for the immersed ring network

(init2(A/{2 1 0}/,A.comp/ => 
B:2/{2 1 0}/,B.comp/)

A.comp <=?B<=[A  ~B.comp]  )

link
N

A.comp

A/1
A/0

B.comp
init

init2

DA/2

B/1
B/0

B/2

N
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4.9.2. The behavior interaction pipeline component network

4.9.3. The arbitration pipeline component network
The arbiter (section 3.2.1) 

{{Ain  Bin => Aout  Bout}}

arbitrates the continual liveness flow comfy with the occasional sensor flow danger into the 
network as a locality judgement of two mutually exclusive differentnesses.

(initN(A/{2 1 0}/, A.comp/ => 
B:N/{2 1 0}/, B.comp/)

A.comp <=?B<=[A  ~B.comp]  )

link

N
B.compA.comp

init

initN

N

A/1
A/0

A/2

B/1
B/0

B/2

N

N

(behmod(X/{behA  behB  behC}/,in.comp  judgement/{bad  notbad}/,in.comp =>  
Z/{behA  behB  behC}/,Z.comp)

in.comp<=?Z/{behA<=[{[X/behC  judgement/bad] 
       [X/behA  judgement/notbad]}  ~Z.comp]

  behB<=[{[X/behA  judgement/bad] 
       [X/behB  judgement/notbad]}  ~Z.comp]

  behC<=[{[X/behB  judgement/bad] 
       [X/behC  judgement/notbad]}   ~Z.comp]
}   )

X/behA
X/behC
X/behB

judgement/bad
judgement/notbad

Z/behA

Z/behC

Z/behB

in.comp
Z.compn
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The dependency relations: judgement is dependent through the arbiter on uhoh which is 
dependent on the sensor and on carryon which is dependent on the auto produce. Locality 
judgement is enabled as a locality but each condition of the locality closes individually with its 
pre arbiter source.

4.9.4. The immersed ring network

The dependency expression.

(   (   =>   ) (Z)
Z<=behmod(init2(initN(Z))   next( ))   )

The inheritance expanded expression.

(   (   =>   ) (Z/{2 1 0}/,Z.comp)
Z, Z.comp <=behmod(init2(initN(Z, Z.comp))  next( ))   )

(next(    => judgement/{bad  notbad}/,judgement.comp/)
(carryon/  uhoh/  comfy/  danger/)
bad.close<=judgement/bad<=[uhoh  ~ judgement.comp]

      notbad.close<=judgement/notbad<=[carryon  ~ judgement.comp]
{{danger<=[sensor ~bad.close]  (comfy<=[~comfy ~notbad.close] => uhoh  carryon}} )

Aout

Bout

Ain

Bin

Arbitrate two independent places
of association into a single locality.

M
U
T
E
X

carrryon

uhoh

auto produce
always asserted

occasionally
triggered

judgement/bad n

n

n

Arbiter

sensor

N

n
n

n

environment

judgement/notbad

judgement.comp

comfy

danger

bad.comp

notbad.comp

bad.comp

notbad.comp

n

n
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Arbitrate two independent places
of association into a single locality.
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Figure 4.13. Linked rings with part of one ring flowing through the environment.

The upper ring of Figure 4.13 remembers the imposed behavior. The lower ring flowing 
partially through the environment determines whether the imposed behavior (section 3.12) 
should change or not. If the sensor’s (section 3.12) closure is D the sensor will monitor the 
environment. If the monitoring exceeds some threshold the sensor will transition its output to D. 
When the closure becomes N it will transition its output to N. Upon which its closure will 
transition to D and the sensor will begin monitoring its input again. A BAD response from the 
sensor might be pain or frustration or danger. In the absence of a BAD response from the 
environment the sensor’s output remains at N and the network remains alive from the auto 
produced, NOTBAD (section 3.11), continually presenting the same differentness to the 
environment. 

The sensor BAD and the auto produce NOTBAD are happening independently and are not 
coordinated. They might even transition to D simultaneously. The arbiter receives the two 
uncoordinated flows BAD and NOTBAD and combines them into a single locality of mutually 
exclusive judgement conditions, presented to the network (section 3.2.1 and Appendix C) .The 
linked rings coupled through the interaction of judgement and X are continually alive 
continually imposing behavior on the environment at their intrinsic throughput rate and only 
occasionally does the environment respond with an indication that behavior should be changed.
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If BAD continues to be asserted the network will continue to change its behavior until it finds 
a behavior that no longer asserts BAD. When BAD ceases the auto produce will play through the 
arbiter with NOTBAD and the network will continue asserting the last behavior that did not 
elicit BAD. If none of the available behaviors unassert BAD then the network is in either mortal 
danger or chronic depression.

The immersed network through its spontaneously interacting differentnesses, is manipulating 
and appreciating the passive differentnesses of the external environment. While an immersed 
network can manipulate passive differentness, information, there is nothing manipulating the 
immersed network which is self contained and self determined. For example, while sequential 
computers are designed, implemented and manipulated by humans there is no designer and 
implementor of humans which must arise and behave entirely on their own merits.

4.10. The memory ring network: Stopping time
A wavefront presented to a closure link will wait indefinitely at the link for the closure 

enabling the wavefront to flow through the link. This behavior of indefinitely waiting for an 
enable can be used to store a wavefront and retrieve the wavefront. A ring can be configured such 
that a wavefront in the ring is caused to wait indefinitely at a closure link until an enable 
wavefront such as a read operation arrives. The memory ring has a binding portal through which 
write wavefronts and read write directives are presented. When the stored wavefront is enabled 
out of the pipeline ring it flows through the output of the pipeline ring and also flows around the 
ring back to the storage closure link to be read again. The memory ring can be written by 
enabling the wavefront at the wait closure link to be consumed making way for a new wavefront 
to flow into the pipeline ring to the closure link.

Wavefronts must be stopped and stored in N-D pairs so it requires a successive pair of 
closure links to stop a flowing wavefront. In Figure 4.14 the D completeness wavefront 
initialized to 0 is stored in locality SD. The following completely N wavefront is stored in 
locality SN.

The stretched behaviors

“all of” “one of”

represent behaviors spanning arbitrarily sized localities of differentness.

OP/write
OP/read

nn
in

outD

auto
consume

in.comp
out.comp

OP.comp

return

memring

SN SD return

return.comp

N

N
SD.comp

SN.comp

Figure 4.14. The memory ring network.
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The memory ring network expression

(memring(in/[31-0]/{1 0}/,in.comp/  OP/{read write}/,OP.comp/  => 
out/[31-0]/{1 0}/,out.comp/)

        ( return/[31-0]/{1 0}/,return.comp/  SN/[31-0]/{1 0}/,SN.comp/  
SD:0/[31-0]/{1 0}/,SD.comp/   )

SD.comp <={?(out, return)<=[SD  OP/read  ~[out.comp  return.comp]]   
          ?[SD  OP/write] }

SN.comp <=?SD<=[SN  ~~ SD.comp]
in.comp <=[(OP.comp, return.comp)<=?SN

<=[{return  [in  OP/write]}  ~ SN.comp]  OP/write ]  )

4.10.1. memring read behavior
When OP/read transitions to D and out.comp transitions to N the stored D completeness 

wavefront is enabled to locality (return out) leaving locality SD a D bubble. The completely N 
wavefront stored in locality SN flows into the D bubble of locality SD leaving locality SN a N 
bubble. The D completeness wavefront in return flows into the N bubble of locality SN and 
OP.comp transitions to D.

When OP.read transitions to N and out.comp transitions to D locality (return out) becomes 
a D bubble. The completely N wavefront in locality SD flows into locality (return out) leaving 
locality SD a N bubble. The D completeness wavefront in locality SN flows into locality SD 
leaving locality SN a D bubble. The completely N wavefront in locality return flows into 
locality SN and OP.comp transitions to N. out.comp transitions to N and the memring is ready 
for a next OP.

4.10.2. memring write behavior
When OP/write transitions to D the D completeness wavefront stored in locality SD is 

enabled to the auto consume locality leaving locality SD a D bubble. The completely N 
wavefront stored in locality SN flows into the D bubble of locality SD leaving locality SN a N 
bubble. locality in is enabled into locality SN and locality in becomes a D bubble. Locality 
OP.close transitions to D.

When OP/write transitions to N the auto consume locality becomes a D bubble. The 
completely N wavefront in SD is enabled to the auto consume locality leaving locality SD a N 
bubble. The D completeness wavefront in locality SN flows into locality SD leaving locality SN 
a D bubble. When locality in transitions to completely N the completely N wavefront flows into 
locality SN and OP.comp transitions to N and the memring is ready for a next OP.

OP/write and the in wavefront are “all of” related which must trace back to a common 
source, such as the decode of an instruction, that establishes the relation. The ring is initialized 
with a wavefront so there is always a wavefront stored in the memory. It is never empty. A read 
will always succeed and a write will always succeed.

4.11. A network of addressable memory rings: arranging time
Memory ring networks can be composed into a large addressable wavefront memory. Figure 

4.15 expressed as a divergent-convergent network of “one of” related branches each branch 
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containing a memory ring. Each memory ring represents differentness of both place of 
association and differentness of content. The wavefront stored in the ring is differentness of 
content. The address of the ring branch references differentness of place of association within the 
memory network which represents differentness of wavefront time. The memory network is 
indifferent to the differentness of wavefront content in any of its branch memory rings.
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Figure 4.15. Addressable memory of memory rings.

Dependency expression for ram:
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(ram(in  addrenable/{3 0}/  OP => out)   
(out/{3 0})

readout<= {out/3-0<=memring(in  [addrenable/3-0  OP])}   )
addrenable/{3 0}/ is not inherited but is defined in ram specifying the size of the memory. 

Inheritance expanded network expression.

(ram(in/[31-0]/{1 0}/,in.comp  addrenable/{3 0}/,addOP.comp  
OP/{read  write}/,addOP.comp => out/[31-0]/{1 0}/,out.comp)   
out,out.comp<= {memring(in,in.comp  

[addrenable/0,addOP.comp OP,addOP.comp])
       memring(in,in.comp  

[addrenable/1,addOP.comp OP,addOP.comp])
       memring(in,in.comp  

[addrenable/2,addOP.comp OP,addOP.comp])
       memring(in,in.comp  

[addrenable/3,addOP.comp OP,addOP.comp])
      }   )

memring being dependent on addrenable/{3 0} and on out/{3 0} is instantiated four times 
each receiving the corresponding components of addrenable/x and out.  in and OP are 
distributed to all four intances of memring. addrenable determines which instance of memring 
receives OP and performs the specified OP.

Being able to stop a wavefront and to retrieve it on demand allows the rearrangement of 
wavefront flow through time and enables the possibility of controlling wavefront flow through 
dynamically constructed dependency networks with wavefront instances of interaction being 
stopped and saved in the addressable memory then being retrieved as needed. In particular the 
one behavior at a time sequential interpretation of dependency networks is enabled.

4.12. A most primitive sequence controller
Any interaction network expression can be decomposed into a sequence of simple behaviors 

that realize the dependency relations among the interaction network behaviors(section 1.1.1). 
The difficulty with one at a time sequencing of behaviors is that it forms a one dimensional 
behavior space in which wavefronts cannot flow directly from behavior to behavior but must 
flow indirectly through a means of delaying wavefronts and releasing them when needed in the 
sequence. The addressable memory of Section 4.11 fulfills this requirement enabling the  
sequential interpretation of dependency networks.

The other enabler of sequential interpretation is the sequence controller which realizes the 
one at a time sequence of behaviors by determining each next behavior, retrieving its input 
wavefronts from the memory flowing them through a specified interaction behavior and 
returning the result wavefront to memory. 

4.12.1. Reducing an interaction network expression
An interpreter behavior is referenced as a full portal behavior references (section 3.4.5.1).
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behaviorname(localityA  localityB => localityC ) 

An interaction network expression is reduced to an interpretable sequence by transforming 
dependency relations into referencable interpreter behaviors and by mapping all localities into 
representations that fit into the wavefront memory. Finally, the behaviors needed to represent the 
three dimensional network in a one dimensional sequence of behaviors are inserted into the 
sequence. 

The expression from the LFSR example of section 4.8 serves as the reduction example.

(     (   =>   )      (B/{1 0}/  C/{1 0}/  D/{1 0}/  E/{1 0}/  F/{1 0}/  O/{1 0}/)
F<=pipe1(E<=pipe0(D<=pipe1(C

<=pipe0(B<=pipe0(pipe0(O
<=XOR(F XOR(XOR(B C) XOR(D E)))))))))   ) 

An interaction network is expressed in terms of syntax relations and name correspondence 
relations. The first task is to re express all syntactic nesting relations as name correspondence 
associations among full portal behavior references. The nameless nested localities of the portal 
nesting relations are assigned names. The behavior references are related by name 
correspondence as full portal behavior references referencing the newly assigned names and are 
ordered to fulfill the dependency precedence relations of the interaction network expression.
4.12.1.1. The XOR full portal behavior references

XOR(D  E => T3)
XOR(B  C => T2)
XOR(T2  T3 -> T1)
XOR(F  T1 => O)

XOR(D  E => T3) and XOR(B  C => T2) can be in any order but both must be before 
XOR(T2  T3 -> T1) which must be before XOR(F  T1 => O).

Some full portal references may need to be further reduced and substituted. Reduction 
proceeds until all references refer to behaviors realized by the sequence controller referencing 
localities that fit into the wavefront memory in an ordered sequence that fulfills the dependency 
relations of the original dependency network expression.

For the purpose of reduction only the interaction dependency relations are considered. The 
closure network is not regarded. The flow coordination of sequential interpretation is quite 
different from the closure flow coordination of the interaction network (section 4.12.2.2).
4.12.1.2. The pipex behavior references

The localities for the locality nested pipe0 and pipe1 behaviors are already named except for 
one which is assigned the name T0. The references are re expressed from locality nested 
references to full portal references in column A of Figure 4.16.

The pipex behaviors do double duty in the interaction network by initializing localities as 
well as moving wavefronts between localities. For the sequenced behaviors these duties are 
separated out in column B of Figure 4.16 with separate behaviors. Behavior initx initializes 
wavefronts in a locality and behavior move moves wavefronts from locality to locality.
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Figure 4.16. Composing the sequence of dependent operations.

These full portal reference behaviors are placed in an order that preserves the dependency 
relations of the original interaction network expression. The initx behaviors can occur in any 
order among themselves but must all occur before any interaction behaviors in the ordered list of 
behaviors. In the LFSR network the first wavefronts flowing through the XORs will be the 
initialized wavefronts not the first moved wavefronts. So the sequential order in column C of 
Figure 4.16 is to first perform the initxs and then perform the XORs then perform the moves of 
the wavefronts. The moves of the wavefronts are ordered such that each locality is read and 
moved before the next behavior overwrites it. 
4.12.1.3. One dimensional complexity

The interaction behaviors of the above list in column C of Figure 4.16 (excluding the init 
behaviors) remain a valid dependency network expression. The behaviors can be shuffled into 
any order and the name correspondence relations still construct the dependency network minus 
the inits. For sequential interpretation, however, there are only a few specific orderings of 
behaviors that will work and there are additional behaviors not derived from the dependency 
network expression that have to be added for sequential interpretation to work.

An ordered list of behaviors to be interpreted one behavior at a time in sequence forms a one 
dimensional behavior space that cannot, on its own, characterize the connectivity of a three 
dimensional interaction network. Because of concurrency and conditionality the next behavior to 
be realized cannot always be the next behavior in the one dimensional sequence. It is necessary 
to conditionally and unconditionally jump around in the one dimensional sequence of behaviors. 
The sequence controller must support the additional behaviors that enable conditional and 
unconditional jumps within the one dimensional sequence.

A

pipex behaviors

pipe1(E => F)
pipe0(D => E)
pipe1(C => D)
pipe0(B => C)
pipe0(T0 => B)
pipe0(O => T0)

→

B

separation

init0(T0)
init0(B)
init0(C)
init1(D)
init0(E)
init1(F) 
move(E => F)
move (D => E)
move (C => D)
move (B => C)
move (T0 => B)
move (O => T0)

→

C

integration

init0(T0)
init0(B)
init0(C)
init1(D)
init0(E)
init1(F)
XOR(D  E => T3)
XOR(B  C => T2)
XOR(T2  T3 => T1)
XOR(F  T1 => O)
move(E => F)
move(D => E)
move(C => D)
move(B => C)
move(T0 => B)
move (O => T0)
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Each directive is assigned a unique name so it can be referenced. A name range with an 
inherent order and easily determined nextness such as numeric is most convenient. In column A 
of Figure 4.17 the assigned names are numeric and an unconditional jump is inserted as the last 
directive closing the ring of dependency. The interpretation begins with the directive named 100, 
progresses to directive named 116 then continues with the directive named 106 forming an 
infinite loop of interpretation emulating the continual behavior and wavefront flow of the LFSR 
ring network.

Figure 4.17. Forming and encoding the one dimensional sequence of behaviors.

The LFSR source network of Section 4.8.5 can be expressed by inserting a simple interface 
protocol. In column B of Figure 4.17 a wait directive is inserted after the last XOR directive and 
a move directive is inserted to move the wavefront in locality O to locality out.

Interpretation begins at 100 and halts at the wait directive with the XORs having delivered 
their output wavefront to locality O. An external reference requests (closes with) the wavefront 
of locality O. The wait falls through and the next behavior moves the wavefront in O to out. The 
sequence of behaviors continues with the move behaviors moving the wavefronts presented to 
the XORs from locality to locality. The wavefronts then flow through the XORs with their 
output wavefront flowing to locality O. The interpretation then waits for the next request. 

A

100 init0(T0)
101 init0(B)
102 init0(C)
103 init1(D)
104 init0(E)
105 init1(F)
106 XOR(D  E => T3)
107 XOR(B  C => T2)
108 XOR(T2  T3 -> T1)
109 XOR(F  T1 => O)
112 move(E => F)
113 move(D => E)
114 move(C => D)
115 move(B => C)
116 move(T0 => B)
117 move(O => T0)
116 jump (106)

B

100 init0(T0)
101 init0(B)
102 init0(C)
103 init1(D)
104 init0(E)
105 init1(F)
106 XOR(D E => T3)
107 XOR(B C => T2)
108 XOR(T2  T3 => T1)
109 XOR(F  T1 => O)
110 wait
111 move(O => out)
112 move(E => F)
113 move(D => E)
114 move(C => D)
115 move(B => C)
116 move(T0 => B)
117 move(O => T0)
118 jump(106)

C

100 2(20)
101 2(11)
102 2(12)
103 3(13)
104 2(14)
105 3(15)
106 4(13 14 => 23)
107 4(11 12 => 22)
108 4(22  23 => 21)
109 4(15  21 => 16)
110 6
111 5(16 => 24)
112 5(14 => 15)
113 5(13 => 14)
114 5(12 => 13)
115 5(11 => 12)
116 5(20 => 11)
117 5(16 => 20)
118 7(106)
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4.12.1.4. Mapping references to memory addresses and to behavior codes
The behavior names are translated into a code that the interpreter can understand to select the 

appropriate behavior. Each locality name is assigned a numeric memory address name. 

The ordered list of behaviors with the reassigned names is in column C of Figure 4.17. The 
behavior code and the memory address names of each behavior are contrived to fit into a single 
unit of wavefront memory that is referenced with one memory address forming an interpretation 
behavior that a sequence controller can read and understand specifying a flow from wavefront 
memory through the referenced behavior and back to wavefront memory. The entire expression 
is now in terms of a sequence of full portal references to numerically coded behaviors realized by 
the interpreter referencing numeric memory address locality names.

The incoherent transition behavior of a self determined interaction network becomes 
temporally and spatially regimented behavior in its sequentially interpreted counterpart.

4.12.2. The sequence controller
The sequence controller of Figure 4.18 is a network of coupled and linked rings that reads 

each behavior from memory and manages the flow of wavefronts from an addressable memory 
through specified interaction behaviors whose results flow back to the memory. There is the 
program counter ring network which determines from the current address and from the the type 
of the previous behavior, branch or not branch, the next address from which to read a behavior. 
There is the decoder ring network which reads and decodes the behavior dispatching the 
behavior code and the memory addresses to the ALU/memory ring network. The ALU/memory 
ring network accesses the input wavefronts from memory, flows them through the specified 
behavior and places the result wavefront back in memory. There is also the branch ring coupled 
through the ALU and the program counter which determines the conditional of a branch.

The sequence of behaviors for the interaction network being interpreted are placed in the 
memory in numeric order. The initial wavefronts of localities are placed in their memory 
locations. The program counter initializes the next behavior address to the first behavior to be 
read, in this case 100. The address is passed to the decoder and the behavior is read, decoded and 
realized. The sequence controller then cycles through the behaviors. The resulting sequence of 
behaviors realizes the source interaction network constructing the network’s behavior extended 
through time and memory.
4.12.2.1. The exposed binding portal

The sequential interpreter is not a completely self determined network that can explore its 
environment entirely on its own. It has an exposed binding portal in that any program can be 
loaded into its memory from an external environment. Once a program is loaded, however, it self 
determinately realizes the program.

numeric locality names
B  ->  11
C  ->  12
D  ->  13
E  ->  14
F  ->  15
O  ->  16

T0  ->  20
T1  ->  21
T2  ->  22
T3  ->  23
out  ->  24

behavior codes
init0  ->  2
init1  ->  3
XOR ->  4
move ->  5
wait   ->  6
jump  ->  7
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Figure 4.18. The sequential interpreter and its linked rings.

A sequential controller however might be outfitted with imposition and sensor behaviors and 
loaded with a never ending program that is essentially self determined and capable of 
independently exploring its environment, a robot.
4.12.2.2. Sequential flow coordination

Sequential interpretation requires that each directive is completed with its asserted output 
written to memory before the next sequential behavior is begun. Completeness of output ensures 
the stable completeness of input presentation for subsequent behaviors. This is different from the 
interaction network for which the completeness of output of a behavior ensures the completeness 
of its own input. In both cases interaction behavior is coordinated in terms of completeness of 
output assertion progressively accumulating to ensure completeness of input presentation.
4.12.2.3. Scalable generality

The sequence controller and addressable memory form a sequential interpreter, an 
interaction network capable of interpretively realizing the behavior of any other interaction 
network. Realizing every interaction network as a unique physical network is not practical and 
does not scale. But being able to express any interaction network directly as a dependency 
network, translate it to a sequential expression and then to realize the interaction network 
expression dynamically constructed through time and memory with a simple sequential 
interpreter that can be indefinitely replicated does scale. 

The dynamic and conditionally varying construction of dependency relations through time 
and memory provides a flexibility and generality of realizability not possible with statically 
realized networks.
4.12.2.4. Expressive generality

Why express one of the multitudes of possible sequences when you can express the one 
unique dependency expression that all the sequences must derive from and which you must 
understand to express one of the seqeunces and have it mechanically translated, compiled, to an 
appropriate sequential expression (section 1.1.1).
4.12.2.5. Again, nothing new or extrinsic

No new primitivity or extrinsic capability has been introduced. The addressable memory and 
sequence controller are realized entirely in terms of the primitive behaviors of section 3.2.1 The 
sufficiently expressive primitive behaviors have finally bootstrapped sequential interpretation.
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1. The author in collaboration with Igor Ilyukhin has implemented a RISC V 32IM as a structure of coupled 
rings in terms of the primitive interaction behaviors of section 3.2.

The derivation rationale of the sequential interpreter did not appeal to a mathematician with 
pencil and paper nor to the notion of algorithm. There was no appeal to Boolean logic, to timing 
analysis or to a timing referent such as a clock. Sequential one at a time interpretive stepping was 
not assumed a priori but emerged as a possibility of universal realizability with the emergence of 
the addressable memory in which wavefronts could be stored and retrieved. 

4.13. A quest fulfilled
The quest of section 1.8 is fulfilled journeying from the pure condition differentiation 

expression of Chapter 2 through the pure association differentiation expressions of Chapter 3 to 
the temporal differentiation expressions of Chapter 4 computational interaction with all 
concurrent relations fully accounted in terms of differentness spontaneously and dependently 
interacting and changing with primitive interaction behaviors (section 3.2) that reliably express 
primitive concurrency behavior and that realize a most primitive sequential interpreter 
bootstrapping sequential interpretation (section 1.8).

4.13.1. Counter example
Sequence control and Boolean logic are considered fundamental to computation. 

Dependency flow computation presents a counter example expressing deterministic complex 
computation containing no Boolean logic expression, no sequence control or any other form of 
explicit control, possessing no stable samplable state and possessing no common behavioral 
referent such as a clock or a mathematician. Furthermore, sequence control and Boolean logic 
are derivable from dependency flow computation implying it to be the more fundamental 
characterization.

4.13.2. Full circle
A self determined interaction network arises able to replicate itself and evolve into a complex 

self determined interaction network that invents differentness interaction mapping with an 
exposed binding portal, that becomes a controlling external environment using interaction as a 
tool to ask questions and receive answers and that becomes fascinated with the limitations of the 
exposed binding portal.

4.13.3. Still not done
There remains one final stage of the journey, a walk through the spectrum of differentiation 

relating the dimensions of condition differentiation and association differentiation.
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Chapter 5: 
The spectrum of Differentiation

5
Any interaction of differentness is represented as a coextensive collaboration between 

condition differentness and association differentness. The spectrum of differentiation, Figure 5.1, 
embodies  this collaboration with pure condition differentiation at one end of the spectrum and 
pure association differentiation at the other end with various proportions of collaboration in 
between. 

Pure Condition
Differentiation

Pure Association
Differentiation

D
N

neuron
networks

Cell
metabolism

Protein interaction
in cytoplasm

decimal
arithmetic

more condition differentiation
less association differentiation

less condition differentiation
more association differentiation

DNA
Boolean

logic
10130 possible

proteins
indefinitely extensible
association structure

Mixed
Differentiation

Figure 5.1. The spectrum of differentiation.

5.1. The collaboration
Different conditions are different within a same place of association. A same condition is 

different within different places of association. A range of mutually exclusively different 
conditions extends the expression of differentness of a same place of association. Different 
places of association asserting the same range of different conditions extends the expression of 
differentness of the same range of different conditions. 

With decimal place value numbers, for instance there are 10 different numeral conditions 0, 
1, 2, 3, 4, 5, 6, 7, 8 and 9. One differentness of place of association in a decimal place value 
number can represent 10 different numeral conditions extending the range of differentness 
expression of the one place by ten differentnesses. Four different places of association asserting 
the same numeral condition, 3333, extends the range of differentness expression of the one 
numeral condition by four differentnesses. Each numeral condition is different by virtue of its 
differentness of place. Condition differentness and association differentness collaborate to 
express a large range of mutually exclusive differentness.

With binary place value numbers each differentness of place of association is extended to two 
differentnesses 0 and 1. Each place of association of a binary number can express only 0 or 1 so 
it takes more places of association to express a comparable decimal number. Decimal number 
1023 requires four decimal places while the comparable binary number 1111111111 requires 10 
binary places. Two representations of a same differentness with different proportions of 
condition differentiation and association differentiation.

Twenty six letter conditions asserted one at a time at different places of association relations 
form words. Words associate to form sentences. Sentences association to form paragraphs and so 
on. Japanese uses an enormous range of different symbol conditions asserted at different places 
of association to form its words and sentences. Again different proportions of condition 
differentness and association differentness to express comparable meaning differentness.

The spectrum of differentiation encompasses this proportionality of collaboration of mutual 
extension between condition differentness and association differentness in the representation of 
mutually exclusive differentnesses and their interactions providing a unifying foundation of 
expressivity among what have been considered to be quite disparate forms of representing 
differentness and the interaction of differentness.
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5.2. A walk along the spectrum
The collaboration is illustrated by walking one temporal instance of one specific interaction 

of differentnesses along the spectrum with condition differentiation and association 
differentiation collaborating in various proportion to represent the one specific interaction.

One differentness from the group of three mutually exclusive differentnesses named U, V, W  
and one differentness from the group of three mutually exclusive differentnesses named X, Y, Z 
associate and interact producing one of nine mutually exclusive differentnesses named A, B, C, 
D, E, F, J, K, L. The example interaction is shown in Figure 5.2 as an interaction mapping table 
and as a list of interaction dependency relations.

Figure 5.2. Example interaction.

The tradeoffs between the proportion of condition differentiation and association 
differentiation are considered in terms of the example interaction at various locations along the 
spectrum characterized in terms of the amount of condition differentiation available. The walk 
begins at the pure condition end of the spectrum with sufficient condition differentiation to 
express the example interaction at a single place of common association and continues by 
constraining condition differentiation until there is only one available differentness condition at 
the pure association end of the spectrum.

5.3. With fifteen available differentness conditions
With fifteen available differentness conditions named A, B, C, D, E, F, J, K, L, U, V, W, X, 

Y, Z  the example interaction can be represented with pure condition differentiation (Chapter 2 
for a more complex example of interaction expressed purely in terms of condition differentiation) 
at a single place of common association as illustrated with the bag in Figure 5.3. The bag begins 
empty. One of conditions X, Y, Z and one of conditions U, V, W enter the bag and interact with 
the interaction propensities expressed in the mapping table producing one of conditions A, B, C, 
D, E, F, J, K, L. The result condition exits the bag leaving the bag empty bounding one temporal 
instance of one specific interaction of differentness. The interaction mapping is the same as 
Figure 5.2.

X
Y
Z

mapping
table

U
A
D
J

V
B
E
K

W
C
F
L

specifies 
interaction→
dependencies

  [W Z] => L
  [V Z] => K
  [U Z] => J
  [W Y] => F
  [V Y] => E
  [U Y] => D
  [W X] => C
  [V X] => B
  [U X] => A
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[W,Z] -> L
[V,Z] -> K
[U,Z] -> J
[W,Y] -> F
[V,Y] -> E
[U,Y] -> D
[W,X] -> C
[V,X] -> B
[U,X] -> A

V
Z

L

C

KJ
FED

BA
U V W

X
Y
Z

Figure 5.3. Fifteen differentness conditions, 1 shaking bag.

With only one place of common association and with associations inside the bag being 
indeterminate there is no differentiation in terms of association. The differentnesses and their 
interaction is expressed purely in terms of condition differentnesses and their interaction 
propensities mapping input differentness conditions to output differentness conditions.

The interaction dependency expression as relations of names of conditions:

      (L<=[W  Z]
        K<=[V  Z]
        J<=[U  Z]
        F<=[W  Y]
        E<=[V  Y]
        D<=[U  Y]
        C<=[W  X]
        B<=[V  X]
        A<=[U  X]  )  

There is no referencing or binding in a pure value expression. Conditions are sufficiently 
differentiating. They just show up and interact.

All possible interaction mappings can be expressed by specifying the interaction propensities 
in the mapping table. For instance:

The interaction is specified entirely in terms of condition differentiation.

5.4. Constrained to nine available differentness conditions
Nine conditions are sufficient to represent the output differentnesses but six of the conditions 

must also be used to represent the input differentnesses.

X
Y
Z

mapping
table

U
B
D
C

V
A
B
E

W
D
A
B

specifies 
interaction→
dependencies

W Z => B
V Z => E
U Z => C
W Y => A
V Y => B
U Y => D
W X => D
V X => A
U X => B
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Figure 5.4. Interaction mapping with nine available differentness conditions.

Input differentness conditions must be differentiated from the identical output differentness 
conditions. This is represented with an association interaction behavior that isolates input 
conditions from identical output conditions establishing isolated localities of differentness for its 
inputs and its output, see Figure 3.4 and section 3.1.3.

An association interaction behavior, as explained in Section 3.1.6, continually receiving input 
interaction conditions and continually asserting an output interaction condition requires a 
condition named N explicitly representing absence of interaction condition as well as the 
monotonic transitioning between interaction condition completeness and completely N including 
the ability of the interaction association behavior to recognize transitions of input to interaction 
condition completeness and to completely N. The condition named N is included as integral to 
this discussion and will be explicitly referenced in the interaction behavior mapping tables and in 
the interaction dependency expressions.

Interaction no longer occurs in terms of freely associating conditions but now occurs inside 
the association interaction behavior in terms of directly associated conditions. The interaction is 
characterized by the mapping table on the right of Figure 5.5 which includes the nine 
differentness conditions plus N with the – indicating no transition. The interaction mapping 
behavior transitions its asserted output to an interaction differentness condition only when both 
presented inputs are interaction differentness conditions (interaction differentness completeness) 
and transitioning its asserted output condition to N only when both presented inputs are 
differentness condition N (completely N) representing emptiness of interaction differentnesses 
(Section 3.1.6). When the presented input is not complete, i.e. there is one N and one interaction 
differentness condition presented, the interaction behavior does not transition its asserted output 
condition (section 3.2).

T/
S/ out/

L

C

KJ
FED

BA
A B C

D
E
F

S/

T/ out/ out/
L

C

KJ
FED

BA
A B C

D
E
F

T/
–

–
–

––– N

N

N

S/9
interaction
conditions

interaction
behavior
mapping

Figure 5.5. Nine differentness conditions with one association interaction behavior.

D
E
F

mapping
table

A
A
D
J

B
B
E
K

C
C
F
L

specifies 
interaction→
dependencies

C F => L
B F => K
A F => J
C E => F
B E => E
A E => D
C D => C
B D => B
A D => A
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The interaction behavior forms a simplest of interaction networks. Each differentness now is 
expressed as a differentness of place of association combined with a differentness of condition. 
Locality S can assert three interaction differentnesses S/C, S/B, S/A and S/N. Locality T can 
assert three interaction differentnesses T/F, T/E, T/D and T/N. Locality out can assert 
differentnesses nine interaction differentnesses out/L, out/K, out/J, out/F, out/E, out/D, out/C, 
out/B, out/A and out/N. Remember that N is not an interaction differentness. The differentnesses 
asserted with identical conditions at different places of association are different by virtue of the 
differentness of place of association. T/F and out/F are different by virtue of the associational 
differentness of T and out.

An interaction begins empty with S/N T/N and  out/N. Inputs S/ and T/ transition to 
interaction conditions and out/ transitions to the determined interaction condition. S/ and T/ 
transition back to N, and out/ transitions to N leaving the interaction behavior empty bounding 
one temporal instance of one specific interaction of differentness.

The interaction dependency expression as relations of names of conditions and names of 
places of association:

(9condexamp(S/{C B A N}/ T/{F E D N} => out/{L K J F E D C B A N} )
out/{L<=[S/C  T/F]
        K<=[S/B  T/F]
        J<=[S/A  T/F]
        F<=[S/C  T/E]
        E<=[S/B  T/E]
        D<=[S/A  T/E]
        C<=[S/C  T/D]
        B<=[S/B  T/D]
        A<=[S/A  T/D]
        N<=[S/N  T/N]  }  )

All possible interaction mappings can be expressed by arranging the output differentnesses in 
the mapping table. The burden of representing differentiation and interaction is now shared 
between condition differentiation and association differentiation.

5.5. Constrained to six available differentness conditions
Six differentness conditions named A, B, C, D, E, F are still sufficient to represent the input 

differentnesses but six differentness conditions are not sufficient to represent the nine output 
conditions so the output differentness out must now be represented as two associated output 
conditions asserted by two association interaction behaviors asserting locality out with two 
component localities Y and Z.  Input locality S/ can assert one of the interaction differentness 
conditions A or B or C. Input locality T/ can assert one of the interaction differentness 
conditions D or E or F. The example interaction mapping is shown in Figure 5.6.
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The specific interaction mapping.

Figure 5.6. Interaction mapping with six available differentness conditions.

The interaction in Figure 5.7 is now expressed as a network of two association interaction 
behaviors asserting the two output conditions. The input conditions asserted by S and T are 
fanned out to the two interaction behaviors. The interaction mapping 6cond1 asserts out/Y and 
the interaction mapping 6cond2 asserts out/Z. The availability of all possible interaction 
mappings means that any arbitrary mapping to the output can be represented.

An interaction begins empty with S/N T/N and out/Y/N and out/Z/N. inputs S/ and T/ 
transition to interaction differentness conditions and out/Y and out/Z transition to the determined 
interaction differentness conditions. S/ and T/ transition back to N, and out/Y and out/Z 
transition to N leaving the interaction network empty bounding one temporal instance of one 
specific interaction of differentness.
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Figure 5.7. Six differentness conditions with two association interaction behaviors.

The dependency expressions for the component association interaction behaviors and for the 
network as relations of names of conditions and names of places of association:

T/
D
E
F

mapping
table

A
A,A
D,A
B,B

S/
B

B,A
E,A
C,B

C
C,A
F,A
D,B

out/Y, out/Z

specified interaction relations
S/A  T/D => out/Y/A  out/Z/A
S/B  T/D => out/Y/B  out/Z/A
S/C  T/D => out/Y/C  out/Z/A
S/A  T/E => out/Y/D  out/Z/A
S/B  T/E => out/Y/E  out/Z/A
S/C  T/E => out/Y/F  out/Z/A
S/A  T/F => out/Y/B  out/Z/B
S/B  T/F => out/Y/C  out/Z/B
S/C  T/F => out/Y/D  out/Z/B
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(6cond1(M/{C B A N}  N/{F E D N}  => O/{F E D C B A N})
O/{A<=[M/A  N/A]
     B<={[M/B  N/D]  [M/A  N/F] }
     C<={[M/C  N/D]  [M/B N/F] }
     D<={[M/A  N/E]  [M/C N/F] }
     E<=[M/B  N/E]
     F<=[M/C  N/E]
     N<=[M/N  N/N]  }  )

(6cond2(M/{C B A N}  N/{F E D N}  => O/{F E D C B A N})
O/{A<={[M/C  N/D]  [M/B  N/D]  [M/A  N/D]

  [M/C  N/E]  [M/B  N/E]  [M/A  N/E] }
     B<={[M/C  N/F  [M/B  N/F]  [M/A  N/F]}
     N<=[M/N  N/N]   }  )

(6condexamp(S/{C B A N}  T/{F E D N}=> out/[Z  Y]/{F E D C B A N})
6cond1(S  T => out/Y)
6cond2(S  T => out/Z)     )

Expressions 6cond1 and 6cond2 express the mappings of the interaction behaviors. The 
expression 6condexamp referencing 6cond1 and 6cond2 expresses how the mappings 
dependently associate as a network to realize the interaction of S/ and T/ to out/[Y Z]/. The 
network as a whole becomes the element of interaction that is singularly referencable from 
interaction to interaction

All possible interaction mappings can be expressed by arranging the output differentnesses in 
the mapping tables of the interaction behaviors to represent any desired mapping of combined 
output conditions.

There is less condition differentiation and more association differentiation.

5.6. Constrained to three available differentness conditions
There are two ways to constrain the expression of condition differentiation. First, the number 

of available conditions can be limited with the availability of association interaction behaviors 
capable of representing all the possible interaction mappings. Second, the available interaction 
mappings can also be limited. These two constraints can be conveniently illustrated and 
discussed in the context of three available interaction differentness conditions

5.6.1. First: all possible interaction mappings available
Three interaction differentness conditions named A, B, C are still sufficient to represent each 

input differentnesses. The nine output differentnesses can still be represented with two 
association interaction behaviors asserting locality out as two component localities Y and Z 
which must now be associatively ordered to differentiate out/Y/A out/Z/B from out/Y/B outZ/
A. With six interaction differentness conditions the Y and Z outputs did not necessarily have to 
be ordered to distinguish the nine output differentnesses. Input locality S/ asserts one of the 
interaction differentness conditions A or B or C. Input locality T/ asserts one of the interaction 
differentness conditions A or B or C. The example interaction mapping is shown in Figure 5.8.
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Figure 5.8. Interaction mapping with three available differentness conditions.

The interaction in Figure 5.9 is still expressed as a network of two association interaction 
behaviors asserting the two output conditions. The input conditions asserted by S and T are 
fanned out to the two interaction behaviors. The interaction mapping 3cond1 asserts out/Y and 
the interaction mapping 3cond2 asserts out/Z. The availability of all possible interaction 
mappings means that any arbitrary mapping to the output can be represented.

An interaction begins empty with S/N T/N and  out/Y/N and out/Z/N. inputs S/ and T/ 
transition to interaction differentness conditions and out/Y/ and out/Z/ transition to the 
determined interaction differentness conditions. S/ and T/ transition back to N, and out/Y/ and 
out/Z/ transition to N leaving the interaction network empty bounding one temporal instance of 
one specific interaction of differentness.
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Figure 5.9. Three differentness conditions with two association interaction behaviors.

The dependency expressions for the component association interaction behaviors and for the 
network as relations of names of conditions and names of places of association.

T/
A
B
C

mapping
table

A
A,A
B,A
C,A

S/
B

A,B
B,B
C,B

C
A,C
B,C
C,C

out/Y/, out/Z/

specified interaction relations
S/A  T/A => out/Y/A  out/Z/A
S/B  T/A => out/Y/A  out/Z/B
S/C  T/A => out/Y/A  out/Z/C
S/A  T/B => out/Y/B  out/Z/A
S/B  T/B => out/Y/B  out/Z/B
S/C  T/B => out/Y/B  out/Z/C
S/A  T/C => out/Y/C  out/Z/A
S/B  T/C => out/Y/C  out/Z/B
S/C  T/C => out/Y/C  out/Z/C
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(3cond1( M/{C B A N}  N/{C B A N}  => O/{C B A N} )
O/{A<={[M/A  N/A]  [M/A  N/B]  [M/A  N/C]}
     B<={[M/B  N/A]  [M/B  N/B]  [M/B  N/C]}
     C<={[M/C  N/A]  [M/C N/B]  [M/C  N/C]}
     N<=[M/N  N/N]   }  )

(3cond2( M/{C B A N}  N/{C B A N}  => O/{C B A N} )
O/{A<={[M/A  N/A]  [M/B  N/A]  [M/C  N/A]}
     B<={[M/A  N/B]  [M/B  N/B]  [M/C  N/B]}
     C<={[M/A  N/C]  [M/B  N/C]  [M/C  N/C]}}  
     N<=[M/N  N/N]   }  )

(3condexamp1( S/{C B A N}  T/{C B A N}=> out/[Z Y]/{C B A N} )
3cond1( S  T => out/Y )
3cond2( S  T => out/Z )     )

Expressions 3cond1 and 3cond2 express the mappings of the interaction behaviors that 
realize the interaction mapping. The expression 3condexamp referencing 3cond1 and 3cond2 
expresses how the mappings dependently associate to realize the interaction of S/ and T/ to out/
[Y Z]/.

Again, all possible interaction mappings can be expressed by arranging the output 
differentnesses in the mapping tables of the association interaction behaviors to represent any 
desired mapping to the associated output conditions.

There is less condition differentiation and more association differentiation in that now the 
association differentness of S and T are necessary to differentiate the presented inputs and out/X 
and out/Y must be associationaly ordered to differentiate out/Y/A out/Z/B from out/Y/B outZ/
A.

5.6.2. Second: only five interaction mappings available
Condition differentiation is further constrained by limiting the available association behavior 

interaction mappings to only five given mappings that cannot be rearranged. The example 
interaction mapping remains identical to Figure 5.8 but realizing the mapping behavior changes 
dramatically. 

To this point in the walk along the spectrum the ability to map any presented input to any 
desired output has been supported by the availability of black boxes of all possible association 
behavior interaction mappings of the available differentness conditions. How the recognition of 
the presented input and the mapping to assertion of the corresponding output happens within the 
black box of the association interaction behavior has not been expressed. With the limitation of 
interaction mappings the internal mechanics of this black box mapping are no longer universally 
available for all possible mappings but only for the limited mappings. Now the generality of 
mapping behavior must be explicitly expressed in terms of association relations among the 
limited available mappings.
5.6.2.1. Recognition of presented input.

The recognition of presented input  differentness is accomplished with two association 
behavior mappings, Equality and Rotate shown in Figure 5.10. 
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The Equality behavior expresses the recognition of a specific presentation of interaction 
differentness conditions, CC. If the input to Equality is CC the behavior transitions its output to 
condition C indicating equality success. For any other combination of presented interaction 
differentness conditions it transitions its output to condition A indicating equality failure.

The Rotate behavior rotates a presented input interaction differentness condition to a next 
interaction differentness condition in order. A sequence of rotates will rotate a presented input 
interaction differentness condition through all of the possible interaction differentness conditions. 
One of these rotations will output the specific equality interaction differentness condition C. 

Condition N plays directly through the Rotate behavior and condition NN plays directly 
through the Equality behavior.

C

A

AA
AAA

AA
A B C

A
B
C

M/

N/ O/

Equality

A
C
BA

B
C

N/

Rotate

–

–
–

––– N

N

N NN

O/

Eq(M  N => O) Ro(N => O)
E R

Figure 5.10. The interaction mappings for equality and rotate behaviors.

The interaction mapping expressions.

(Eq( M/{C B A N}  N/{C B A N}  => O/{C B A N} )
O/{A<={[M/A  N/A]  [M/A  N/B]  [M/A  N/C]
       [M/B  N/A]  [M/B  N/B]  [M/B  N/C]
       [M/C  N/A]  [M/C N/B]  [M/C  N/C]}
     C<=  [M/C  N/C]
     N<=[M/N  N/N]   }  )

(Ro( N/{C B A N}  => O/{C B A N} )
O/{A<= N/C
     B<=N/A]
     C<=N/B] 
     N<=N/N  )

5.6.2.2. The cross association recognition network
The presented input condition can be recognized by how many rotations it takes to rotate the 

input condition to the specific equality condition C. Condition C after two rotations means that 
the input condition was A. Condition C after one rotation means that the input condition was B. 
Condition C after no rotation means that the input condition was C. For each input each rotated 
condition will be asserted at a different place of association. One of the places will assert C 
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indicating the presented input condition. The rotation places of association are cross associated. 
In the cross association of the rotation places there will be one occurrence of CC identifying the 
presented input conditions. One Equality behavior in a rank of Equality behaviors will 
recognize the one occurrence of CC and transition its output to C. The remaining eight Equality 
behaviors will transition their output to A indicating recognition failure. Presentation S/N and T/
N is recognized with all nine Equality behaviors assserting N.

The cross association recognition portion of the interaction network is illustrated in Figure 
5.11. An interaction begins with an empty network with S/N and T/N presented as input and all 
of the association interaction behaviors asserting N. S/A and T/B are presented to the network 
input. The three conditions are represented in color showing the flow of presented conditions 
through the rotations, into the rank of equality behaviors and to the assertion of recognition 
condition C. The specific presentation of conditions is recognized at a particular place of 
association in the network. After the interaction the input presentation transitions to S/N and T/N 
and the network empties of interaction conditions.

Only one equality
behavior will be
presented with
CC and assert C.

All the others will
assert A.

The single C
assertion will
determine the
output.

[S/A  T/A]
RECOGNIZED
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E
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G
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I
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[S/A  T/C]

[S/B  T/A]

[S/B  T/B]
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[S/C  T/A]

[S/C  T/B]

[S/C  T/C]

E

RR

RR

E

E

E

E

E

E

E
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Figure 5.11. Cross association recognition network for example interaction with three 
differentness conditions and limited behavior mappings.

The cross association recognition portion of the interaction dependency expression.
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(3condexamp2( S/{C B A N}  T/{C B A N}  => OUT/[Y Z]/{C B A N} )
( cross/[A B C D E F G H I]/{C B A N} )

/* cross association recognition. Only one transitions to C the other 8 transition to A.*/
/* When both inputs are N all of the equality behaviors will transition to N. */

           cross/[A<=Eq( Ro( Ro( S ))  Ro( Ro( T ))) /* reocgnize S/A  T/A  */
          B<=Eq( Ro( Ro( S ))  Ro( T )) /* reocgnize S/A  T/B  */
          C<=Eq( Ro( Ro( S ))  T) /* reocgnize S/A  T/C  */
          D<=Eq( Ro( S )  Ro( Ro( T ))) /* reocgnize S/B  T/A  */
          E<=Eq( Ro( S )  Ro( T )) /* reocgnize S/B  T/B  */
          F<=Eq( Ro( S )  T) /* reocgnize S/B  T/C  */
          G<=Eq( S  Ro( Ro( T ))) /* reocgnize S/C  T/A  */
          H<=Eq( S  Ro ( T )) /* reocgnize S/C  T/B  */
          I<=Eq( S  T )  ]… /* reocgnize S/C  T/C  */……)

5.6.2.3. Assertion of the mapped output
The rank of equality behaviors outputs one C and eight As. The task is to have the one C 

condition assert the appropriate output condition by prioritizing the flow of Bs and Cs over the 
flow of As to the output assertion. This is accomplished with two Assert behaviors and one 
Priority behavior, shown in Figure 5.12.

If the AssertB behavior is presented with condition C it will output condition B but if 
presented with condition A will output condition A.

If the AssertA behavior is presented with condition C it will output condition A and if 
presented with condition A will output condition A. If the one C condition is converted to A 
there are no Bs or Cs converging to the output. There are only As converging and the output will 
be A.

Condition C does not need to be transitioned into condition C so there is no AssertC 
behavior. 

The priority behavior will pass the highest priority condition with A the lowest priority B 
the middle and C the highest priority. A network of priority behaviors will pass the highest 
priority condition presented to the network.

M/

O/
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CBB
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A B C
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N/
–

–
–

––– N
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NN
B
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C
N

N/ O/
N
A
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C
N

N/ O/

Assert B
Ba(N => O) Pr(M  N => O)Aa(N => O)

PB A

Figure 5.12. Output convergence behaviors.
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The interaction mapping expressions:

(Pr( M/{C B A N}  N/{C B A N}/ => O/{C B A N} )
O/{A<=[M/A  N/A]  
      B<={[M/A  N/B]  [M/B  N/A]  [M/B  N/B]}
      C<={[M/C  N/A]  [M/C  N/B]  [M/C  N/C]  [M/A  N/C]  [M/B N/C]}
      N<=[M/N  N/N]   }  )

(Aa( N/{C B A N}  => O/{C B A N} )
O/{A<= {N/A  N/C}
      N<=N/N } )

(Ba( N/{C B AN}  => O/{C B A N} )
O/{A<= N/A
      B<=N/C
      N<=N/N }  )

5.6.2.4. The convergence assertion network
The one condition C of the cross association recognition determines the output conditions. 

Each recognized input that specifies output condition B the recognizing C condition flows 
through an AssertB behavior. Each recognized input that specifies output condition A the 
recognizing C condition flows through an AssertA behavior. Each recognized input that 
specifies output condition C is not transitioned because the recognition success condition is 
already C. The result of the assert behaviors is eight A conditions and one asserted output 
condition which may also be condition A. If all nine recognition conditions are condition N then 
out/Y will be condition N.

In Figure 5.13 all nine input recognitions flowing through locality cross/ are presented to a 
priority network that converges the flows to the assertion of out/Y. The three condition are 
represented in color showing the flow of presented conditions through the assertion and priority 
behaviors to out/Y. 
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assert output
condition collect output condition to output

all to
out/Y/B

all to
out/Y/C

all to
out/Y/A
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A
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B
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P
P

P
P

cross/B/
cross/E/
cross/H/
cross/C/
cross/F/
cross/I/
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cross/D/
cross/G/

A
B
C

Figure 5.13. Three condition output convergence network to assert out/Y.

Assertion convergence dependency expression:
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out/Y<= Pr( Pr( Pr( Pr( Ba( cross/B) Ba( cross/E)) Ba( cross/H))  
    Pr( Pr( cross/C  cross/F) cross/I)) 
    Pr( Pr( Aa( cross/A) Aa( cross/D)) Aa( cross/G)))

5.6.2.5. The complete network realizing the example interaction.
Figure 5.14 shows the association network expressing the example interaction with three 

differentness conditions A, B and C and the set of five interaction behaviors Ro( …), Eq( …), 
Ba( …), Aa( …) and Pr( …) . 

An interaction begins with the network empty of interaction condition with S/N T/N, all the 
internal behaviors asserting N and  out/Y/N and out/Z/N. The inputs transition to S/B and T/C. 
The three condition are represented in color showing the flow of presented conditions through 
the rotations, into the rank of equality behaviors and through the convergence network to out/Y 
and out/Z. S/ and T/ transition to N, all internal behaviors transition to N and out/Y and out/Z 
transitions to N leaving the interaction network empty with completely N bounding one temporal 
instance of one specific interaction of differentness. 

The flow through the network is a collaboration between differentness of condition, 
differentness of interaction behavior and differentness of place of association in the network.
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Figure 5.14. Three differentness conditions with five interaction mappings realizing the 
example interaction with 41 behaviors.
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The complete interaction network expression.

(3condexamp2( S/{C B A N}  T/{C B A N}  => OUT/[Y Z]/{C B A N} )
( cross/{A B C D E F G H I}/{C B A N} )

/* cross association recognition. Only one transitions to C the other 8 transition to A.*/
/* When both inputs are N all of the equality behaviors will transition to N. */

           cross/[A<=Eq( Ro( Ro( S ))  Ro( Ro( T ))) /* reocgnize S/A  T/A  */
          B<=Eq( Ro( Ro( S ))  Ro( T )) /* reocgnize S/A  T/B  */
          C<=Eq( Ro( Ro( S ))  T) /* reocgnize S/A  T/C  */
          D<=Eq( Ro( S )  Ro( Ro( T ))) /* reocgnize S/B  T/A  */
          E<=Eq( Ro( S )  Ro( T )) /* reocgnize S/B  T/B  */
          F<=Eq( Ro( S )  T) /* reocgnize S/B  T/C  */
          G<=Eq( S  Ro( Ro( T ))) /* reocgnize S/C  T/A  */
          H<=Eq( S  Ro ( T )) /* reocgnize S/C  T/B  */
          I<=Eq( S  T )  ]… /* reocgnize S/C  T/C  */…

/* The convergence to out/Y */
out/Y<= Pr( Pr( Pr( Pr( Ba( cross/B) Ba( cross/E)) Ba( cross/H))  /* assert Y/B */

     Pr( Pr( cross/C  cross/F) cross/I))  /* assert Y/C */
     Pr( Pr( Aa( cross/A) Aa( cross/D)) Aa( cross/G))) /* assert Y/A */

/* The convergence to out/Z  */
out/Z<= Pr( Pr( Pr( Pr( Ba( cross/D) Ba( cross/E)) Ba( cross/F))   /* assert Z/B */

    Pr( Pr( cross/A  cross/H) cross/I))     /* assert Z/C */
    Pr( Pr( Aa( cross/B) Aa( cross/C)) Aa( cross/G)))  /* assert Z/A */ )

All possible interaction mappings are now expressed by restructuring the network in terms of 
the limited mappings. There is less condition differentiation and considerably more association 
differentiation.

5.7. Constrained to two available differentness conditions
Constrained to two available interaction differentness conditions named A and B the inputs 

with three differentnesses and the output with nine differentnesses have to be represented with 
two interaction differentness conditions and four interaction differentness conditions respectively 
as shown in Figure 5.15. 
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The interaction mapping.

Figure 5.15. Interaction mapping with two available differentness conditions.

5.7.1. Two differentness condition interaction behavior mappings
With only two interaction differentness conditions B becomes the Equality condition and 

AssertB is no longer needed. The limited interaction mappings become the four association 
interaction behaviors in Figure 5.16.
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Figure 5.16. Two differentness condition association interaction behaviors.

The component behavior expressions:

(Eq( M/{B A N}  N/{B A N}  => O/{B A N} )
O/{A<={[M/A  N/A]  [M/A  N/B]  [M/B  N/A]}
     B<=  [M/B  N/B]
     N<=[M/N  N/N]   }  )

        T/Y, T/Z   

specified interaction relations
S/Y/A  S/Z/A  T/Y/A  T/Z/A  => out/Y/A  out/Z/A  out/Y/A  out/Z/A
S/Y/A  S/Z/B  T/Y/A  T/Z/A  => out/Y/A  out/Z/A  out/Y/A  out/Z/B
S/Y/B  S/Z/A  T/Y/A  T/Z/A  => out/Y/A  out/Z/A  out/Y/B  out/Z/A
S/Y/A  S/Z/A  T/Y/A  T/Z/B  => out/Y/A  out/Z/A  out/Y/B  out/Z/B
S/Y/A  S/Z/B  T/Y/A  T/Z/B  => out/Y/A  out/Z/B  out/Y/A  out/Z/A
S/Y/B  S/Z/A  T/Y/A  T/Z/B  => out/Y/A  out/Z/B  out/Y/A  out/Z/B
S/Y/A  S/Z/A  T/Y/B  T/Z/A  => out/Y/A  out/Z/B  out/Y/B  out/Z/A
S/Y/A  S/Z/B  T/Y/B  T/Z/A  => out/Y/A  out/Z/B  out/Y/B  out/Z/B
S/Y/B  S/Z/A  T/Y/B  T/Z/A  => out/Y/B  out/Z/A  out/Y/A  out/Z/A

A,A
A,B
B,A

mapping
table

A,A
A,A,A,A
A,A,B,B
A,B,B,A

S/Y, S/Z
A,B

A,A,A,B
A,B,A,A
A,B,B,B

B,A
A,A,B,A
A,B,A,B
B,A,A,A

out/W, out/X, out/Y/, out/Z/
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(Ro( N/{B A N}  => O/{B A N} )
O/{A<= N/B
     B<=N/A
     N<=N/N } )

(Aa( N/{B A N}  => O/{B A N} )
O/{A<= {N/A  N/B}
     N<=N/N } )

(Pr( M/{B A N}  N/{B A N}/ => O/{B A N} )
O/{A<=[M/A  N/A]  
     B<= {[M/A  N/B]  [M/B  N/A]  [M/B  N/B]}
     N<=[M/N  N/N]   }  )

5.7.2. Recognition of presented input
The differentness localities S and T are each represented as two places of association S/Y/, S/

Z/ and T/Y/, T/Z/ extending the two condition differentnesses to cover the three input interaction 
differentnesses. With the input differentnesses represented with two localities two stages of  
cross association recognition are required. In the left half of Figure 5.17 each input locality is 
expanded with rotate behavior presented to a rank of three equality behaviors only one of which 
will assert B and the rest will assert A. The two resulting localities of asserted conditions are then 
cross associated and only one cross association will be the specific recognition presentation of 
BB. One of the rank of equality behaviors will recognize the one cross association presenting 
BB asserting its output condition B indicating recognition success with the other eight equality 
behaviors assert output condition A indicating recognition failure.
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Figure 5.17. Cross association recognition network for example interaction with two 
differentness conditions.

The recognition portion of the interaction expression:
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(2condexamp(S/[Y Z]/{B A N}  T/[Y Z]/{B A N}  => OUT/[W X Y Z]/{B A N})
(cross/[A B C D E F G H I]/{B A N}   Scross/[A B C]/{B A N}   
   Tcross/[A B C]/{B A N} )
         Scross/[A<=Eq( Ro(S/Y)  Ro(S/Z) ) /* reocgnize S/Y/A  S/Z/A  */

           B<=Eq( Ro(S/Y)  S/Z ) /* reocgnize S/Y/A  S/Z/B  */
           C<=Eq( S/Y  Ro(S/Z) )  ] /* reocgnize S/Y/B  S/Z/A  */

         Tcross/[A<=Eq( Ro(T/Y)  Ro(T/Z) ) /* reocgnize T/Y/A  T/Z/A  */
           B<=Eq( Ro(T/Y)  T/Z ) /* reocgnize T/Y/A  T/Z/B  */
           C<=Eq( T/Y  Ro(T/Z) )  ] /* reocgnize T/Y/B  T/Z/A  */

/* cross association recognition. Only one transitions to B the other 8 transition to A.*/
/* When the input is all N all of Scross, all of Tcross and all of cross transition to N  */
        cross/[A<=E( Scross/A  Tcross/A) /* reocgnize S/Y/A  S/Z/A  T/Y/A  T/Z/A */

       B<=Eq( Scross/A  Tcross/B) /* reocgnize S/Y/A  S/Z/A  T/Y/A  T/Z/B */
       C<=Eq( Scross/A  Tcross/C) /* reocgnize S/Y/A  S/Z/A  T/Y/B  T/Z/A */
       D<=Eq( Scross/B  Tcross/A) /* reocgnize S/Y/A  S/Z/B  T/Y/A  T/Z/A */
       E<=Eq( Scross/B  Tcross/B) /* reocgnize S/Y/A  S/Z/B  T/Y/A  T/Z/B */
       F<=Eq( Scross/B  Tcross/C) /* reocgnize S/Y/A  S/Z/B  T/Y/B  T/Z/A */
       G<=Eq( Scross/C  Tcross/A) /* reocgnize S/Y/B  S/Z/A  T/Y/A  T/Z/A */
       H<=Eq( Scross/C  Tcross/B) /* reocgnize S/Y/B  S/Z/A  T/Y/A  T/Z/B */
       I<=Eq( Scross/C  Tcross/C) ] /* reocgnize S/Y/B  S/Z/A  T/Y/B  T/Z/A */

  …...)

5.7.3. Assertion of the mapped output
The one condition B of the recognition determines each output through a priority 

convergence network in which the recognition results are first priority collected and then 
presented to the AssertA behavior just before the final priority interaction behavior that asserts 
the output condition.

The one B condition and the eight A conditions from the cross association recognition will 
pass through the convergence network and set out/Z/A or out/Z/B. When all nine inputs are N 
the output will be out/Z/N.
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Figure 5.18. Two condition output convergence network to assert out/Z.

Output convergence portion of interaction dependency expression:
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out/Z<= Pr( Aa( Pr( Pr( Pr( cross/A  cross/C) Pr( cross/E  cross/G)  ) cross/I) )
 Pr( Pr( cross/B  cross/D) Pr( cross/F cross/H))   )

5.7.4. The complete network realizing the example interaction.
An interaction begins as an empty network with S/Y/N, S/Z/N, T/Y/N, T/Z/N all internal 

behaviors asserting N and  out/W/N, out/X/N, out/Y/N, out/Z/N. Inputs S/Y/A, S/Z/A, T/Y/B, 
Y/Z/A transition to interaction differentness conditions and the output localities out/W/A, out/X/
B, out/Y/B, out/Z/A transitions to the determined interaction differentness conditions. S/Y, S/Z, 
T/Y, Y/Z transition back to N, and out/W, out/X, out/Y, out/Z transitions to N leaving the 
interaction network empty of interaction differentness conditions bounding one temporal 
instance of one specific interaction of differentness.
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Figure 5.19. Two interaction differentness conditions with four interaction mappings 
realizing the example interaction with 55 behaviors.



A Journey Through Computatuion 2/21/25, 11:39 AM

121 Copyright © 2024 by Karl Fant

The complete interaction dependency expression:

(2condexamp( S/[Y Z]/{B A N}  T/[Y Z]/{B A N}  => OUT/[W X Y Z]/{B A N} )
( cross/[A B C D E F G H I]/{B A N}/ 

Scross/[A B C]/{B A N} Tcross/[A B C]/{B A N} )
         Scross/[A<=Eq( Ro(S/Y)  Ro(S/Z) ) /* reocgnize S/Y/A  S/Z/A  */

           B<=Eq( Ro(S/Y)  S/Z ) /* reocgnize S/Y/A  S/Z/B  */
           C<=Eq( S/Y  Ro(S/Z) )  ] /* reocgnize S/Y/B  S/Z/A  */

         Tcross/[A<=Eq( Ro(T/Y)  Ro(T/Z) ) /* reocgnize T/Y/A  T/Z/A  */
           B<=Eq( Ro(T/Y)  T/Z ) /* reocgnize T/Y/A  T/Z/B  */
           C<=Eq( T/Y  Ro(T/Z) )  ] /* reocgnize T/Y/B  T/Z/A  */

/* cross association recognition. Only one transitions to B the other 8 transition to A.*/
/* When the input is all N all of Scross, all of Tcross and all of cross transition to N  */
        cross/[A<=Eq( Scross/A  Tcross/A)/*   reocgnize S/Y/A  S/Z/A  T/Y/A  T/Z/A */

        B<=Eq( Scross/A  Tcross/B)   /* reocgnize S/Y/A  S/Z/A  T/Y/A  T/Z/B */
        C<=Eq( Scross/A  Tcross/C)   /* reocgnize S/Y/A  S/Z/A  T/Y/B  T/Z/A */
        D<=Eq( Scross/B  Tcross/A)   /* reocgnize S/Y/A  S/Z/B  T/Y/A  T/Z/A */
        E<=Eq( Scross/B  Tcross/B)   /* reocgnize S/Y/A  S/Z/B  T/Y/A  T/Z/B */
        F<=Eq( Scross/B  Tcross/C)   /* reocgnize S/Y/A  S/Z/B  T/Y/B  T/Z/A */
        G<=Eq( Scross/C  Tcross/A)   /* reocgnize S/Y/B  S/Z/A  T/Y/A  T/Z/A */
        H<=Eq( Scross/C  Tcross/B)   /* reocgnize S/Y/B  S/Z/A  T/Y/A  T/Z/B */
        I<=Eq( Scross/C  Tcross/C) ]    /* reocgnize S/Y/B  S/Z/A  T/Y/B  T/Z/A */

/* assert out/Z */
out/Z<= Pr( Aa( Pr( Pr( Pr( cross/A  cross/C) Pr( cross/E  cross/G)  ) cross/I) )

Pr( Pr( cross/B  cross/D) Pr( cross/F cross/H))   )
/* assert out/Y */

out/Y<= Pr( Aa( Pr( Pr( Pr( cross/A  cross/D) Pr( cross/E  cross/H)  ) cross/I) )
Pr( Pr( cross/B  cross/C) Pr( cross/F cross/G))   )

/* assert out/X */
out/X<= Pr( Aa( Pr( Pr( Pr( cross/A  cross/B) Pr( cross/D  cross/G)  ) cross/I) )

Pr( Pr( cross/C  cross/C) Pr( cross/F cross/H))   )
/* assert out/W */

out/W<= Pr( Aa( Pr( Pr( Pr( cross/A  cross/B) Pr( cross/C  cross/D)  ) 
 Pr( Pr( cross/F  cross/G) Pr( cross/H  cross/G)  )) )

        cross/I)    )

There is less condition differentiation and more association differentiation.

5.7.5. Two differentness condition interaction with extrinsic coordination
With an extrinsic coordinating behavior such as a mathematician or timing analysis and a 

clock the N condition is no longer needed and the AssertA behavior, which becomes a default, is 
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no longer needed. Two differentness condition extrinsically coordinated interaction behaviors 
reduce to Boolean logic as shown in Figure 5.20.

BA
AA

A B
A
B

M

N O

Equality

A
BA

B
N

Rotate

O O

Priority

BB
BA

A B
A
B

N

M

Figure 5.20. Two condition interaction behaviors assuming extrinsic coordination.

An extrinsically coordinated network can make assumptions about behavior such as that after 
a specific time interval all interactions within the association network have occurred. With only 
two possibilities and after the interval one possibility was not successful it can be assumed by 
default that the other possibility was successful. At a specified time or at the discretion of the 
mathematician a so called truth function will be asserting T indicating its own truth or it will be 
asserting F indicating by default the alternate truth. The converge network for each output with 
default behavior reduces to Figure 5.21.

out/Z

recognition
that generates
condition A
recognition
that generates
condition B

Z/A is now a default condition of Z/B not
being asserted at the clock tic and does
not need to be explicitly determined.

Reg Reg

Clock

Figure 5.21. Extrinsically coordinated output convergence.

Also, with the truth function comes the “don’t care condition. If a truth function can perform 
its duty by ignoring a related variable then it does not care what the condition of the variable 
might be. With extrinsic control logical completeness is no longer necessary.

Figure 5.21 seems to be much more efficient than Figure 5.18 but it comes with the 
conceptual cost of an incomplete logic and a logically extrinsic critical timing requirement and 
timing referent. Extrinsic coordination is a crutch propping up an insufficient logic.

5.8. Constrained to one differentness condition: 
Pure association differentiation

Constrained to one interaction differentness condition named A condition interaction 
differentiation ceases to exist and all interaction differentiation is in terms of differentness of 
place of association. The mapping is now entirely in terms of names of places of association 
rather than in terms of names of conditions. The collaboration of condition differentnesses A and 
N reduce to serving only to assert or not assert the differentness of a place of association.
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There is no longer any need for the Rotate behavior or the Assert behavior. There are no 
interactions of different conditions. There are only interactions of two or more As which can be 
determined with a threshold. The Equality behavior reduces to an “all of” behavior. The priority 
behavior reduces to a “one of” behavior. Replacing A with D the behaviors of Figure 5.22 
correspond to the “all of” and “one of” behaviors of Section 3.2. For continuity this chapter will 
continue using A as the only differentness condition. These primitive behaviors do not have 
reference names but are referenced syntactically with [  ] and {  }. 
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N O

“all of”   O<=[M  N]

–
– N

N

N
O

“one of”   O<={M  N}
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Equality Priority

D
D

DB Z–
– N

N

N
ZD

D
DB D

D N

N

N

AA

Sec 3.2 Sec 3.2

Figure 5.22. One differentness condition association interaction behaviors.

Mutual exclusivity, previously represented by asserting one at a time of two or more 
differentness conditions at a single place of association is now represented with two or more 
places of association only one of which, at a time, will transition to A with the rest remaining at 
N. In Figure 5.23 the locality named S consists of three places of association named U, V and W 
only one of which, at a time, will transition to A. The locality named T consists of three places of 
association named X, Y and Z only one of which, at a time, will transition to A. The locality 
named out consists of nine places of association named A, B, C, D, E, F, G, H and I only one of 
which, at a time, will transition to A.

An interaction will begin with the presented input at N and with all behaviors asserting N. 
Only one of U, V or W and one of X, Y or Z will transition to A. The other inputs will remain at 
N. Only one of the equality behaviors will be presented with input completeness AA and 
transition its output to A. The other eight equality behaviors will be presented with incomplete 
input and will not transition their outputs which will remain asserting N. When the presented 
inputs transition back to all N the one equality behavior will transition its output to N and all of 
the equality behaviors will be asserting N leaving the interaction network empty and bounding 
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W Z => L
V Z => K
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W X => C
V X => B
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one temporal instance of one specific interaction of differentness. Figure 5.23 illustrates the 
transition of input differentnesses to S/U/A and T/Y/A.

Two mutually exclusive differentnesses are mutually inclusively cross associated to produce 
one mutually exclusive differentness.

L

C

KJ
FED

BA
U V W

X
Y
Z

S/

T/ out/

example interaction

U/

V/

W/

B/

C/
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J/
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E/

L/

Recognized
input

S/U  T/X

S/V  T/X

S/W  T/X

S/U  T/Y

S/V  T/Y

S/W  T/Y

S/U  T/Z

S/V  T/Z

S/W  T/Z

S/

T/

out/

A
N

Figure 5.23. One differentness condition with two interaction mappings realizing the 
example interaction with 9 behaviors.

The complete interaction expression:

(Onecondexamp1 (S/{U,V,W}/{A N}, T/{X,Y,Z}/{A N} -> out/{A,B,C,D,E,F,J,K,L}/{A N});
     out/{A<=[S/U  T/X]

B<=[S/V  T/X]
C<=[S/W  T/X]
D<=[S/U  T/XY]
E<=[S/V  T/Y]
F<=[S/W  T/Y]
G<=[S/U  T/Z]
H<=[S/V  T/Z]
I<=[S/W  T/Z] }    )  

There is no condition interaction differentiation and all interaction differentiation is 
association differentiation.
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5.8.1.1. Generality of mapping
The rank of “all of” behaviors is the cross association recognition of presented input. The 

one transition to A can realize any mapping to any output locality of fewer than nine 
differentnesses with convergence through “one of” behaviors as illustrated inFigure 5.24. The 
places of association are renamed with A, B and C to illustrate the differentness of place of 
association. Differentnesses S/B/A T/B/A and out/B/A all asserting /B/A are all different by 
virtue of the differentness of the localities of association of S, T and out.

Figure 5.24 illustrates the presentation transition to S/C/A and T/A/A leading to the assertion 
of output differentness out/C/A.
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S/

T/ out/

example interaction

C
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A B C

A
B
C

out/

A
N

Figure 5.24. General mapping with “all of” and “one of” behaviors.

The complete interaction expression:

(Onecondexamp2 (S/{U V W}/{A N}  T/{X Y Z}/{A N} -> out/{A B C}/{A N})
     out/{A<= { [S/U  T/X]  [S/U  T/Z]  [S/V  T/Z] }

B<= { [S/V  T/X]  [S/U  T/Y]  [S/W  T/Y] }
C<= { [S/W  T/X]  [S/V  T/Y]  [S/W  T/Z] } }     )

Expressional generality, the ability to map any presented input differentness to any asserted 
output differentness is now realized entirely in terms of association differentiation. There is no 
differentiation in terms of differentness of condition.

5.9. Spectrum summary: The differentness of differentness
Differentnesses and their interaction can be expressed as differentness of conditions with 

specific interaction propensities promiscuously associating at a place of common association 
(pure condition differentiation) or as differentness of places of association with specific 
association relations each asserting only two different conditions, A and N with promiscuous 
interaction propensities (pure association differentiation) or with varying proportions of 
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condition differentiation and of association differentiation across a spectrum of differentiation. 
There must always be a little bit of each domain of differentiation in the expression of any 
interaction, at least one place of association with pure condition differentiation and at least two 
conditions with pure association differentiation.

As the spectrum was traversed from the pure condition differentiation end of the spectrum 
association differentiation took on increasing expressional duties until with pure association 
differentiation there was no longer any condition differentiation.
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Figure 5.25. The spectrum of differentiation.

In the center of Figure 5.25 is the example interaction. To the right is shown the pure 
association expression of the interaction. To the left is shown the pure condition expression of 
the interaction. The pure condition expression and the pure association expression can be viewed 
as duals in specific respects. 

• Each maps directly from the example interaction table.
• There are nine condition interaction propensity relations on the left and nine interaction 

behaviors on the right. 
• There are six input conditions on the left and six input localities on the right. 
• There are nine output conditions on the left and nine output localities on the right. 
• On the left persistences asserting conditions freely associating in a shaking bag interact 

according to their asserted condition’s interaction propensities. 
• On the right a network of statically associated interaction behaviors interact according to 

their association relations.

The two ends of the spectrum are the expression realms of nature. At the pure condition 
end is the biological cell with lots of unique conditions, proteins, with specific interaction 
propensities and relatively little association structure. There are 10130 possible protein folding 
conditions and uncountable possible protein interaction relations. At the pure association end of 
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the spectrum is the neural network which is the direct association of differentnesses through 
association interaction behaviors.

The two realms of differentness are coextensive in that a range of differentness of 
condition reuses and extends the range of differentness expression of a place of association and 
each place of association reuses and extends the differentness expression of a range of 
differentness conditions. They collaborate with each extending the expression of differentness of 
the other to indefinitely extend expression of differentness.

The two realms cooperate in complex ways. A biological cell full of protein conditions 
contains associating organelles each isolating a pure condition expression. Cells associate to 
form organs which associate to form an organism in the midst of which is the blood stream, a 
pure condition expression indiscriminately associating to every cell in the organism.

Humans tend to express inside the spectrum encoding differentness with place-value 
numbers, place being association differentness and value being condition differentness. There are 
few conditions, few interaction behaviors and large indefinitely extensible association networks. 

One domain of expression can be held constant while the other domain is allowed free 
rein. Conditions and interaction behaviors can be held constant while supporting arbitrarily 
complex association networks. Ten different numerals and their arithmetic behaviors support a 
vast realm of arbitrarily extensible numbers and their interactive association. The association 
relations can be held constant while condition differentiation is arbitrarily available. All 
mammals have essentially a constant association structure with the same body design, organ 
structures and cell structures. The variability among mammals is largely a matter of protein 
conditions expressed by DNA.

The spectrum of differentiation encompasses and unites disparate expressions of 
differentness and its interaction that previously appeared to be distinct or only superficially 
related. Nature and humans interact in fundamentally the same way in terms of differentness and 
the specific interaction of differentness.
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Appendix A: Blinded by Elegance: 
The Null Convention Logic Library

A.
The reader may have notice that Null Convention Logic (NCL)1 and its operator library are 

not mentioned in the text. There are strategic reasons, conceptual reasons, practical reasons and 
technical reasons. 
A.1. Null Convention Logic

Null Convention Logic was conceived as a threshold logic with hysteresis behavior that 
monotonically transitioned between “diff” completeness and completely “null” or “not diff”. 
Because of multi-rail differentness representation complementing is a matter of relabeling rails 
instead of converting signals so there are no signal conversions in the wavefront path. Wavefront 
path logic is purely positive. The only signal conversion in NCL is the conversion of the closure 
of an oscillation.

Threshold logic was academically established and fully characterized. After a thorough 
review of threshold logic by my colleague Dave Duncan the library of NCL operators was 
conceived in terms of the threshold functions of four or fewer inputs. It turned out that there was 
an established mapping between positive Boolean functions of four or fewer inputs and threshold 
functions of four or fewer inputs. It was considered that this correspondence between positive 
Boolean functions of four or fewer inputs, threshold functions of four or fewer inputs and the 
NCL library operators as shown in Figure A.1 was a compelling correspondence of primitivities 
that would be advantageous. 
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NP equivalence classes for positive
Boolean functions of 4 or fewer variables
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The NCL function library.

Source Rationale for the NCL Function Library.
(Muroga, pp 435-437)
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Figure A.1.  Function classification rationale for the NCL operator library.

There are 28 PN classes of unate or positive boolean functions of four or fewer variables. 
There are 25 classes of threshold functions of four or fewer variables. Twenty five of the positive 
Boolean classes are linearly separable and map directly onto the 25 classes of threshold functions 
of four or fewer variables. The 3 remaining Boolean functions of four or fewer variables are not 
linearly separable and do not map onto threshold functions but can map onto threshold circuits. 
Including these three circuits in the library allowed a complete correspondence between the NCL 
library and all positive Boolean functions of four or fewer variables as shown in Figure A.2.

We considered this correspondence to be elegant, practical and even necessary to relate to 
existing practice: a useful strategic positioning.

• We could use Boolean equations to design NCL circuits.
• We could relate to a familiar language.
• We could possibly translate clocked Boolean designs directly to NCL designs.
• We could use standard design tools for NCL.
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Figure A.2. The 28 NCL library operators with their corresponding positive Boolean 
functions.

A.2. The strategic error
 Relating so directly to Boolean logic turned out to not be as useful as anticipated. While we 

could specify an NCL network in terms of Boolean operations the correspondence was not direct. 
There were a lot of considerations beyond the Boolean equations involved. Also we could not 
just take clocked Boolean designs and map them to NCL. The two logics behaved very 
differently. 

Furthermore, relating to Boolean logic implied that Boolean logic was somehow more 
fundamental than NCL. We were trying to establish NCL as a superior form of logic to a 
population who by training and experience accepted Boolean logic as conceptually fundamental, 
a minimal necessary and sufficient theoretical standard to which all else reduces. Relating to 
Boolean logic just reinforced this view. It took many years of experience to realize that relating 
NCL to Boolean logic was more confusing then clarifying.

While everyone understood Boolean logic, threshold logic was not a current topic of 
familiarity. Its time had passed without it becoming used or widely understood. We were relating 
to a dinosaur, an elegant dinosaur but a dinosaur nonetheless.
A.3. The conceptual error
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The logic portrayed by the library of NCL operators is involved and complicated. For all its 
sense of completeness and closure with the 28 operators the library did not convey a sense of 
primitivity. Each operator had an assigned threshold and many of the inputs had assigned 
weights. Networks were difficult to design and optimize because each input had to be connected 
to a correctly weighted operator input.

The conceptual error was to characterize this complicated set of behaviors as primitive. They 
seemed primitive. All but three operators were single gate threshold functions. I was aware that 
the gates had corresponding 1 of M and M of M networks shown in Figure A.3 but the threshold 
gates seemed like a higher level of primitivity, of atomicity and of efficiency. Even though there 
was a corresponding network of simpler operations the threshold operator was still conceptually 
a single gate, not a network, implying primitivity. The fact that it was a logic of threshold 
functions further implied an established primitivity.

Another confusion was that the operator hysteresis behavior was established with a single 
feedback signal further implying atomicity and primitivity.
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Figure A.3. NCL library with equivalent 1ofM and MofM networks.

The library seemed to embody a superior expressional efficiency and an elegant coherence or 
completeness. It was not until I started thinking in terms of “all of” and “one of” as primitives 
that I was able to stand outside the library and detach from Dave’s and my creation.
A.4. The practical error

After studying many ways to implement the library gates including several implementations 
with actual threshold behavior it was finally decided to implement the gates with transistor 
switching networks. The decision was driven by what was possible and what was available. 
While there were fabrication techniques for threshold oriented devices using capacitors and other 
devices they were not as developed, as available or as efficient as the transistors. It was not so 
much an error as a constraint of practicality. So the elegant threshold behaviors were 
implemented with Boolean switching networks which, as it turned out, did not compete well with 
clocked Boolean switching networks.

Other possibilities of implementing the behaviors with inherent threshold and hysteresis 
behavior such as quantum dots, magnetic domains, memristors for instance may become 
practical in the future.
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Figure A.4. The NCL library in terms of “one of” and “all of” behaviors.

A.5. The technical error
The technical error is the completeness behavior of the library operators which can lead to 

deadlock. In viewing the library operators as threshold functions, including the three operators 
that actually encapsulated threshold networks, they were considered as primitive with atomic 
behavior. In particular, completeness relations would apply across all inputs of each operator. 
When a particular quantity of inputs transitioned to “diff” an operator would transition its output 
to “diff” and when “all of” the inputs transitioned to “not diff” the operator would transition its 
output to “not diff”. This completeness protocol worked in most circumstances but not always 
and the occasional failure is the fatal flaw. The difficulty is illustrated with the NCL THXOR 
operator in relation to its corresponding network.
A.5.1. The nominal behavior of THXOR

Figure A.5 shows the behavior of THXOR (top) and its associated network (bottom) is valid 
if [A,B] and [C,D] trace back to a “one of” relationships and are mutually exclusively presented. 
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Figure A.5. Nominal behavior of THXOR and its associated network
A.5.2. The race behavior of THXOR

The inputs of every “one of” behavior must be mutually exclusive, only one transition to 
“diff” per “diff” wavefront. If [A,B] and [C,D] are not “one of” related they can collide and race 
to the “one of” behavior.
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Figure A.6. [A,B] and [C,D] wavefronts collide.

In Figure A.6.a wavefront [C,D] transitions to “diff” first and Z transitions to “diff”. In 
Figure A.6.b wavefront [A,B] transitions to “diff” while [C,D] is still at “diff” but Z is already 
transitioned to “diff”. In Figure A.6.c the [C,D] “not diff” wavefront arrives. Z does not 
transition to “not diff”. [A,B] will never close and the network is deadlocked. The not 
coordinated wavefronts can also glitch Z which is equally disastrous.
A.5.3. The deadlock behavior of THXOR

Ensuring that any “one of” combination behavior has only one input transition to “diff” at a 
time is a basic design rule. The direct means of ensuring that the [A,B] and [C,D] wavefronts are 
mutually exclusive is for one component of each wavefront to come from the same 1composite 
locality. For instance, in Figure A.7 A and C are replaced with S/0 and S/1 from 

locality S/{1,0};

S/0 will enable B. S/1 will enable D. This is correct in that there will be only one input to the 
“one of” behavior at a time. The deadlock difficulty with THXOR arises if either B or D 
transition to “diff” during the “diff” phase of the other. Figure A.7 illustrates D transitioning 
while [S/0,B]  is “diff”.

In Figure A.7.a S/0 enables B and Z transitions to “diff”. In Figure A.7.b D transitions to 
“diff” while [S/0,B]  are still at “diff”. In Figure A.7.c [S/0,B] transitions to “not diff” but the 
THXOR output Z does not transition to “not diff” because the input to THXOR is not completely 
“not diff”. The protocol for [S/0,B] is not completed and never will be. D is waiting on S/1 which 
will never occur because S/0 will never be closed and released. THXOR is deadlocked. If B and 
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D transition to “diff” mutually exclusively, which is typical, then the THXOR operator works 
just fine. 

In the corresponding network of Figure A.7.c the completeness is across the individual 
combination behaviors. D is not preventing the transition of Z so S/0 can complete its oscillation 
and S/1 can eventually occur. Locality S is sufficient to ensure mutual exclusivity into the “one 
of” behavior and does not risk deadlock or race.

The network works correctly and the atomic threshold THXOR operator does not.
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Figure A.7. The MUX protocol and deadlock.

The technical error is in treating the NCL operations as atomic primitives with completeness 
across all the inputs. This deadlock possibility is present with any NCL threshold operator that 
includes “one of” relations.

The THXOR difficulty was pointed out to me by others particularly by my colleague Stephen 
Johnson on numerous occasions. I persisted in viewing the difficulty not as a flaw in the library 
but as a problem of proper design rules. There is a necessary cooperation between the flow path 
behavior and the NCL operators. The paths have to monotonically transition and certain mutual 
exclusivities must be observed. My attitude was that this was just one of the mutual exclusivities 
that had to be observed. The fact that it rarely occurs contributes to perceiving it as a network 
design issue rather than a primitive atomic behavior issue. For many years I did not design 
complex circuits myself but relied on teams of engineers. It was only much later after I lost 
access to engineering support that I started designing significant NCL circuits myself. Only after 
I encountered several deadlock situations in my own designs and ended up backing out several 
threshold gates into networks of simpler gates to solve the completeness issue instead of altering 
the flow path behavior did I realize that the notion of atomic completeness across all inputs of 
many of the NCL operators is technically erroneous and that the characterization of the logic as 
threshold functions was misguided.

The difficulty follows from the dual threshold nature of the NCL operators. Traditional 
threshold logic is treated as passive logic functions that are coordinated with a clock. There was 
only one threshold that was either met or not at the clock tic. The next clock tic tested the 
threshold again. There was no behavior requirement imposed on the threshold function that 
reflected to the behavior of its input. However the input behaved the threshold gate just 
monitored the threshold.

With NCL there are two thresholds that have to be alternately matched so the input to the 
operator must behave properly by monotonically transitioning between completeness conditions. 
It is this behavior dependence between operator behavior and flow behavior that can be correct 
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by construction. But this cooperative behavior can also be incorrect by construction as is the case 
with the NCL operator completeness behavior. The criteria of correct construction can be subtler 
than expected.
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Appendix B: Pipeline Performance
B.
B.1. Basic pipeline network structure and behavior

The first parameter of pipeline performance is the oscillation network period. The 
oscillation path, shown in Figure B.1, is characterized in two parts, the wavefront flow path of 
the oscillation, in green, and the bubble flow path of the oscillation, in orange*. The bubble 
flow path contains the oscillation closure flow path (section 3.7). The notion of bubble and 
bubble path will develop over the section. The combined delay of the two paths gives the 
oscillation network period. By convention, the wavefront path includes the enable rank of the 
input link and the bubble path includes the enable rank of the output link.

N
N

N
N

Figure B.1. Oscillation network oscillation/flow path.

Catenating the wavefront flow paths of the linked oscillations, Figure B.2, gives the 
wavefront flow path of the pipeline and adding the delays of the wavefront flow paths gives the 
wavefront path delay or forward latency of the pipeline.

N
N

N
N

Figure B.2. Wavefront flow path, the forward latency of pipeline.

Catenating the bubble flow paths of the linked oscillations, Figure B.3, gives the bubble flow 
path of the pipeline and adding the delays of the bubble flow paths gives the bubble path delay 
or reverse latency of the pipeline.

N
N

N
N

Figure B.3. Bubble flow path, the reverse latency of pipeline.

B.2. Primitive component performance
While delays in relation to some external time referent have no relevance to the correct 

behavior of a network, its performance in relation to an external time referent might be important 
to the network relating to behaviors external to the network. Its performance in relation to an 

*. Bubble, an unusually apt asynchronous design term, is an emptiness into which wavefronts can flow.



A Journey Through Computatuion 2/21/25, 11:39 AM

140 Copyright © 2024 by Karl Fant

external time referent can be determined in terms of subnetwork delays in relation to the external 
time referent.

Composing two half oscillations makes a complete oscillation. Each half oscillation 
contributes a portion of delay to each path of the complete oscillation. The half oscillation 
wavefront path delays are added to get the wavefront path delay for the new oscillation. The half 
oscillation bubble path delays are added to get the bubble path delay for the new oscillation for 
the new oscillation. Adding the wavefront path delay and the bubble path delay gives the period 
of the new oscillation.

Figure B.4 shows the input half oscillation and the output half oscillation of the quad to dual 
network component and the delays associated with the wavefront path and bubble path of each 
half oscillation. To keep the delay discussion simple (connections) have no delay and primitive 
search behaviors have delay based on their inputs.
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Figure B.4. Half oscillations of quad to dual primitive network.

Figure B.5 shows the delays associated with the half oscillations of the dual to quad network 
component.
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Figure B.5. Half oscillations of dual to quad primitive network.

B.3. Network composition
Networks are composed by associating the locality name of an output half oscillation to the 

corresponding locality name of an input half oscillation forming a full oscillation. The 
performance of the full oscillation is the combination of the performance of the half oscillations.
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Figure B.6. The composed components form a pipeline network with one full oscillation.

network conversion (A -> Z):
locality (A, Z)/{3,2,1,0}/; 
locality X/[1,0]/{1,0}/; 
   QuadToDual (A -> X) 
   DualToQuad (X -> Z)
endnetwork

B.3.1. Composition performance
The key factor of pipeline performance is the oscillation period. The performance of a 

boundary half oscillation is deferred until it is composed. For the composed network of Figure 
B.6 the oscillation period of the composed oscillation in network conversion is 160 ps so the 
maximum throughput of the pipeline is one “diff” wavefront every 320 ps. The pipeline will 
sustain any throughput presented to its input slower than or equal to 320 ps per “diff” wavefront. 
The initialization delay, the sum of the wavefront propagation delays, for network conversion is 
120 ps. The initialization delay for the composed oscillation is 160 ps which in this case 
determines the initialization delay 160 ps plus margin, for the network. Usually the initialization 
delay is determined by the network wavefront propagation delay which is typically far longer 
than any individual oscillation period.
B.3.2. Further composition

Since the output and the input boundaries of network conversion are compatible half 
oscillations, two conversion networks can be connected forming a larger longpipe network. Both 
component networks propagate initialization so the composed network propagates initialization. 
Both networks propagate completeness behavior so the composed network accepts and 
propagates completeness behavior. All orphans remain isolated. The composed network, 
validated and bounded by half oscillations, is ready for further composition.
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Figure B.7. Bigger network from smaller networks.

network longpipe (A -> Z):
locality (X, A, Z)/{3,2,1,0}/; 
   conversion (A -> X) 
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   conversion (X -> Z)
endnetwork

B.3.3. Longpipe performance
Performance parameters are accumulated as composition progresses. In Figure B.7 the 

longest oscillation period is the new formed oscillation at 170 ps. The network will sustain a 
throughput of 340 ps per “diff” wavefront. The forward latency is the sum of the wavefront path 
delays, 240 ps. The reverse latency is the sum of the bubble path delays, 420 ps. The wavefront 
path initialization delay is 240 ps. The slowest oscillation initialization delay is 170 ps So the 
initialization delay for the new network is 240 ps plus margin.
B.3.4. Pipeline performance

The input and output of a pipeline are half oscillations which, for purposes of performance 
analysis, are assumed to be sufficient flow in that when the input closure enables an input 
wavefront a wavefront is present and flows into the pipeline and when an output wavefront is 
presented its closure is present and the wavefront flows out of the pipeline. A pipeline network is 
a unit of composition that flows with a characteristic throughput which equals the period of its 
slowest oscillation and with a characteristic latency which is the delay of its wavefront path.
B.3.5. Performance in an environment

If the environment responds more slowly than the pipeline’s characteristic throughput then 
the pipeline will conform to the throughput of the environment. If the environment can conform 
to the throughput of the pipeline then the system will flow at the characteristic throughput rate of 
the pipeline. If the environment demands a faster throughput than the pipeline can support then 
the environment/pipeline system will fail.
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Appendix C: Wavefront Arbitration
C.

Uncoordinated wavefront flows that share a common resource must be arbitrated into 
mutually exclusive coordinated flow behavior with only one wavefront proceeding at a time. 
Wavefronts flow in “not diff”/“diff” wavefront pairs. An arbiter behavior will allow only one 
wavefront pair to flow at a time.
C.1. The MUTEX

The mutual exclusion behavior of an arbiter is provided by a MUTEX. Figure C.1 Shows a 
CMOS implementation of a MUTEX, an SR flipflop with a filter across the two outputs to 
minimize metastable oscillation and facilitate resolution of the metastability.

M
U
T
E
X

G1

G2

R1

R2

G2

R1

R2

G1

Figure C.1.MUTEX circuit and symbol.

A MUTEX is a primitive mutual exclusion behavior. that will assert grants G1 or G2 
mutually exclusively in time. They are asserted, respectively, in response to the requests R1 or 
R2 which can be asserted at any time. If asserted simultaneously the MUTEX will chose one 
request to grant and block the other request until the granted request is released. When the 
granted request is released its grant will be removed and the waiting request will be immediately 
granted. If one request arrives first it is granted and the second arriving request waits until the 
first request is released upon which the waiting request is immediately granted. If a request is 
released before it is granted then it is not granted and has no effect. So there is an assumption 
that the behaviors asserting R1 and R2 are sensitive to their grants, will wait appropriately and 
that the assertion of the grant will ultimately cause the release of the request.
C.2. The arbiter

A wavefront arbiter must allow a “not diff”/“diff” wavefront pair. A MUTEX request occurs 
with the arrival of a “diff” wavefront and the transition of request to “diff”. With the arrival of 
the “not diff” wavefront the request will transition to “not diff” and the MUTEX will 
immediately allow a waiting grant. This does not allow for the passage and completeness of the 
“not diff” wavefront before allowing the next grant. There must be an additional mechanism in 
addition to the MUTEX that waits for the “not diff” wavefront to completely propagate before 
granting the waiting request. Figure C.2 shows the arbiter core with the extra circuitry to wait on 
the “not diff” wavefront.1 The arbiter core fits into an oscillation and arbitrates wavefront flow 
through the oscillation.
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Figure C.2.Arbitrating oscillation.

In the following example an arbitrating oscillation receives two uncoordinated single rail 
flows and produces a single coordinated dual rail flow. In Figure C.3 the arbiter oscillation 
begins in an initial configuration awaiting wavefront flow.
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Figure C.3.Arbiter oscillation awaiting wavefront flow.

“diff” wavefronts arrive simultaneously at R0 and R1.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.4.Request “diff” wavefronts arrive simultaneously at MUTEX.

In Figure C.4 two “diff” wavefronts arrive simultaneously at the MUTEX.
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Figure C.5.The MUTEX grants R1 and blocks R0.

In Figure C.5 request R1 is granted with MUTEX Grant MG1 and Arbiter Grant AG1. R0 is 
blocked by the MUTEX. 
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Figure C.6.The R1 flow closes with in1 enabling the “not diff” wavefront.

In Figure C.6 R1 flows through the link and closes with in1 enabling the “not diff” wavefront 
flow. The closure also closed with the arbiter core through AG1COMP disabling AG0.
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Figure C.7.R1 is released and R0 is immediately granted by the MUTEX.

In Figure C.7 the R1 “not diff” wavefront flows to the MUTEX releasing the R1 request. The 
MUTEX immediately grants the R0 request with MG0 which is blocked at AG0. There is a 
local time relation here in that the AG1COMP flow must arrive at AG0 before the “not 
diff” wavefront arrives at R1 and releases the request.
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Figure C.8.The “not diff” wavefront closure released the block of AG0.

In Figure C.8 the R1 “not diff” wavefront flow closure flows through AG1COMP and 
releases the AG0 block.
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Figure C.9.The R0 “diff” wave flows.

In Figure C.9 the R0 “diff” wavefront flows through AG0 and the link. The “diff” closure 
flowing through AG0COMP blocks AG1 and enables the “not diff” wavefront at in0.

in0

in1

M
U
T
E
X

MG0

MG1

AG0

AG1

dual/0

dual/1

R0

R1

N

N

N
N

N
dualCOMP

R0COMP

R1COMP

AG0COMP

AG1COMP

Arbiter core

dual
rail
flow

indepentent
single rail flow

indepentent
single rail flow

“diff”
“not diff”

Figure C.10.The R0 “not diff” wavefront flows.

In Figure C.10 the R0 “not diff” wavefront flows through the link closing with in0, releasing 
AG1 and the arbiter oscillation returns to its initial configuration awaiting the next “diff” 
wavefront.
C.3. Arbitrating composite wavefronts

Figure C.11 shows an arbitrating oscillator arbitrating uncoordinated dual-rail flow paths 
through a “one of” behavior into a single dual-rail flow path. Large composite wavefronts can be 
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1. The arbiter core is derived from a standard asynchronous circuit called a tree arbiter the development of 
which is recounted in Teresa Meng, Synchronization Design for Digital Systems, (Norwell, Massachusetts, 
Kluwer Academic Publishers, 1991). pp 158-163.

arbitrated. The completeness of the dual-rail wavefront is used as the request. The grant enables 
the flow of the wavefront through the grant link.
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Figure C.11.Two dual rail paths arbitrated into “one of” behavior.

Figure C.12 shows large composite independent wavefronts arbitrated into a single 
composite wavefront flow. Any one rail portion of the completeness of a wavefront can be used 
as the request. The grant is used to enable the flow of the wavefront through the grant link. The 
completeness of flow is managed between the grant link and the requesting link. The 
completeness of the grant link is reduces to a single rail closure which presents to AGxCOMP 
and closes with the requesting link.
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Appendix D: Wavefronts and bubbles
D.

Wavefronts flow forward into bubbles. Bubbles flow backward around wavefronts. This 
difficult to intuit counterflow behavior of wavefronts and bubbles is the fundamental dynamic 
flow behavior of a network of linked oscillations. Wavefronts and bubbles interact at a link. The 
link symbol of Figure D.1 is used in the following discussion.
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closure
Figure D.1.The link symbol

A link presents a D wavefront when asserting D and its closure is enabling D.
A link presents a D bubble when asserting D and its closure is enabling N.
A link presents a N wavefront when asserting N and its closure is enabling N.
A link presents a N bubble when asserting N and its closure is enabling D.
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D.1. Pipeline flow behavior
A D wavefront will flow into a N bubble. The N bubble flows around the D wavefront becoming a D 

bubble. A N wavefront will flow into a D bubble. The D bubble flows around the N wavefront becoming 
a N bubble. Another way to say it is that D Wavefronts flow through an empty background of N bubbles 
trailing D bubbles followed by N wavefronts flowing through D bubbles trailing N bubbles restoring the 
background empty condition of N bubbles through which a successor D wavefront can flow. 

A pipeline network is initialized by an initialization signal to an empty background condition of N 
bubbles. The initialization signal must be held long enough for the initializing N wavefront to propagate 
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through the entire pipeline. The initialization signal is the only aspect of network design that is 
necessarily associated with an external time referent.
D.1.1. Pipeline initialization:
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Figure D.2.    Pipeline in random power up state with an initialization signal forcing the 
converters to assert N.
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D.1.2. Wavefront and bubble flow behavior
In Figure D.5 a D wavefront is presented to the input and flows into the N bubbles through 

the entire pipeline leaving behind D bubbles waiting for an N wavefront. It is not accepted at the 
output and becomes stalled at the output as a D wavefront, .
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Figure D.5.    A D wavefront flows through N bubbles.

In Figure D.6 a following N wavefront is presented to the input and flows into the D bubbles 
leaving behind N bubbles. It cannot flow into the D wavefront and is blocked, .
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Figure D.6.    A N wavefront flows through D bubbles.
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In Figure D.7 successive wavefronts are presented to the input and flow into the pipeline 
being successively blocked and filling the pipeline with wavefronts waiting for the first D 
wavefront to be accepted.
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Figure D.7.     Pipeline filled with blocked wavefronts.

In Figure D.8 the first D wavefront is accepted and a D bubble presents at the output of the 
pipeline.
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Figure D.8.    Output D wavefront is accepted and D bubble enters pipeline.

In Figure D.9 the N wavefront flows into the D bubble leaving behind an N bubble.
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Figure D.9.    N wavefront flows into D bubble.

In Figure D.10 the D wavefront flows into the N bubble leaving behind a D bubble. 
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Figure D.10.    D wavefront flows into N bubble.

In Figure D.11 the N wavefront flows into the D bubble leaving behind a N bubble. The 
rightmost N wavefront flows out of the pipeline leaving behind an N bubble. 
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Figure D.11.     N wavefront flows into D bubble.
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In Figure D.12 the D wavefronts flows into both N bubbles leaving behind a D bubbles ...  
And so on.
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Figure D.12.    D wavefront flows into N bubble.

The bubble, alternating between N bubble and D bubble, flows backward through the waiting 
wavefronts in the pipeline. Each wavefront progresses one oscillation with each bubble entering 
the pipeline and flowing through the wavefronts. As each wavefront flows forward into a bubble 
a bubble flows backward around the wavefront. In the absence of bubbles wavefronts do not 
flow. In the absence of wavefronts bubbles do not flow.
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Appendix E: Initializing a D wavefront in a pipeline
E.

All interaction networks need to be initialized at inception. A pipeline network of linked 
oscillations initializes with all conversions forced to N and with completely N presented to the 
network inputs which flows through all the links and through each oscillation network to 
initialize the entire pipeline network to N or empty. The init signal, which has to be held long 
enough for the N conditions presented to the input of the network to propagate through the entire 
network, is the only signal in an interaction network with a specific and extrinsic timing 
requirement. When the init signal is released, all conversions transition to D filling the network 
with N bubbles (Appendix D) enabling the first transition to D wavefront to flow into and 
through the network.
E.1. Initializing a D wavefront

Occasionally it is necessary to initialize a D wavefront in a pipeline network otherwise 
initialized to all N. An individual closure can be initialized to D or N. Initialization is specified 
with D or N in the primitive behavior graphic symbol which is also connected to the init signal. 
Initializing a D wavefront in a pipeline involves two consecutive oscillation networks as shown 
in Figure E.1. The initializing oscillation network initializes a D completeness wavefront across 
the closure flow path. The oscillation networks receiving the initialized wavefront must block 
each initialized D with an initialized N to present a N initialization wavefront to the rest of the 
pipeline. The closures of the two initializing oscillation networks use uninitialized converters. 
When the init signal is released the D wavefront begins spontaneously flowing through the 
pipeline.
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Figure E.1.Initializing a D wavefront in a pipeline network.
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Appendix F:   5 bit Multiply interaction network
F.

The 5bitmul requires two component networks not yet defined halfadd and mul. The 
halfadd expression below specifies the halfadd interaction network in the left of Figure F.1.

(halfadd(A/{1 0}/  B/{1 0}/ -> sum/{1 0}/ Cout/{1 0}/)
sum/{1<={[A/0  B/1] [A/1  B/0]}
           0<={[A/0  B/0] [A/1  B/1]} }
Cout/{1<=[A/1  B/1]
   0<={[A/0  B/0] [A/0  B/1] [A/1  B/0]}  }   )

bound reference name

dependency relations

binding portal localities

sum is dependent on the dependency relations of its components, {1 0} on input localities A 
and B. Cout is dependent on the dependency relations of its components, {1 0} on input 
localities A and B

The mul expression below specifies the mul interaction network in the right of Figure F.1.

(mul(A/{1 0}/  B/{1 0}/ => P/{1 0}/)
     P/{1<=[A1 B1]
  0<={[A/0 B/0] [A1 B0] [A/0 B/1]} } )

binding portal localitiesbound reference name

dependency relations

P is dependent on the dependency relations of its components, {1 0} on input locality A and 
B.

mul

A/1

A/0

B/1

B/0

11

01

10

00

AB
P/1

P/0

A/1

A/0

B/1

B/0

11

01

10

00

AB

sum/1

sum/0

Cout/1

Cout/0

halfadd
Figure F.1.  halfadd and mul component networks

The 5bitmul references component networks fulladd, mul and halfadd all of which are 
constant and fulfill the completeness criterion. The 5bitmul expression below specifies the 5 bit 
multiply interaction network of Figure F.2.
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(5bitmul(A/[4-0]  B/[4-0] -> P/[9-0])
   ((C11 C12 C21 C31 C22 C13 C41 C32 C23 C14 C51 C42 C32

C23 C33 C24 C52 C43 C34 C53 C44 C53 C54)/{1 0}/)
   P/[9<=C54
        8<=fulladd(mul(A/4 B/4) C44 C53 =>  #  C/54)
        7<=fulladd(fulladd(mul(A/4 B/3) C43 C52 =>  # C53) mul(A/3 B/4) C34 =>  #  C/44)
        6<=fulladd(fulladd( fulladd(mul(A/4 B/2) C42 C51 =>  # C52)

mul(A/3 B/3) C33 =>  # C43) mul(A/2 B/4) C24 =>  #  C/34)
        5<=fulladd(fulladd( fulladd( halfadd( mul(A/4 B/1) C/41 =>  # C51)

mul(A/3 B/2) C32 =>  # C42)
mul(A/2 B/3) C23 =>  # C33) mul(A/1 B/4) C14 =>  #  C/24)

        4<=halfadd(fulladd( fulladd( fulladd( mul(A/4 B/0)  mul(A/3 B/1) C/31 =>  # C41)
mul(A/2 B/2) C22 =>  # C32)
mul(A/1 B/3) C13 =>  # C23) mul(A/0 B/4) =>  #  C/14)

        3<=halfadd(fulladd( fulladd( mul(A/3 B/0)  mul(A/2 B/1) C/21 =>  # C31)
  mul(A/1 B/2) C12 =>  # C22) mul(A/0 B/3) =>  #  C/13)

        2<=halfadd(fulladd( mul(A/2 B/0)  mul(A/1 B/1) C/11 =>  # C21) mul(A/0 B/2) =>  -  C12)
        1<=halfadd(mul(A/1 B/0) mul(A/0 B/1) =>  #  C11)
        0<=mul(A/0 B/0 )

]   )

binding portal localitiesbound reference name

dependency relations

internal localities

5bitmul inherits locality structure in the same way as the 5bitadd above.

(5bitmul(A[4-0]/{1 0}/  B[4-0]/{1 0}/ => P[9-0]/{1 0}/) (…)  ...  )

P is dependent on the dependency relations of its components, [9-0] on input localities A and 
B and the internal Cxx localities. The detailed relations are too involved to verbalize.
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Figure F.2.  5 bit multiply interaction network.

Each fulladd, halfadd and mul component network in the 5bitmul network is constant and 
fulfills the completeness criterion so 5btmul as a whole is constant and fulfills the completeness 
criterion. If any part of A or B is not completely formed a component network input will not 
completely form, the component network will not transition its output and a part of P will not 
transition. If P transitions to completeness it means that the inputs A and B have transitioned to 
completeness.
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Appendix G: The orphan delay risk
G.

With the emergence of completeness closure and the oscillation network of section 3.7 the 
orphan risk can be characterized. The delay risk of the orphan is in the N wavefront not fully 
propagating before the next transition to D wavefront arrives at an orphan branch. The next 
transition to D wavefront cannot arrive at an orphan branch until the transition to D wavefront is 
allowed into the network by the closure. Consequently, successive D wavefronts cannot flow 
faster than the oscillation period of the network. The delay risk of the orphan can be evaluated by 
determining:

1. that all orphan branches are isolated to a single branch path within the interaction 
network and do not propagate through a primitive interaction behavior,

2. That the shortest orphan branch delay contributes to the shortest oscillation period of the 
network so the delay risk is how much longer the longest orphan path delay is than the 
shortest orphan branch delay,

3. that the orphan delay risk, the shortest orphan branch delay subtracted from the longest 
orphan branch delay, is considerably less than the shortest period of the oscillation 
network encompassing the orphans ensuring that the longest orphan branch delay will 
complete its transition to N before the next wavefront of transition to D can arrive at the 
orphan branch.

Orphan branches are local and are a component of the oscillation period. A too long orphan 
branch delay can be contrived but, assuming a local uniformity of manufacturing variations over 
branches and behaviors, all local component delays will vary similarly and the orphan branch 
delays will always be proportionally shorter than the oscillation period. In Figure G.1 the longest 
green path has to propagate faster than the shortest purple path. 
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Figure G.1.Orphan risk: shortest oscillation period to longest orphan branch delay.

Orphan delays are timing relations relative to local delays within the network in contrast to 
timing relations critically relative to a global external time referent or to some indeterminate 
environmental delay (isochronic fork). It is generally sufficient to ensure that all orphan branches 
do not propagate through a primitive behavior to mitigate the orphan delay risk.
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